Skip to main navigation menu Skip to main content Skip to site footer

Vol. 13 No. 2 (2014)

Articles

IMPACT OF CO2 ON QUALITY OF BABY LETTUCE GROWN UNDER OPTIMIZED LIGHT SPECTRUM

Submitted: November 23, 2020
Published: 2014-04-30

Abstract

The cost and yield are two the most important criteria in agriculture by which optimization of environmental factors are needed to carry out. In the present study, we investigated the efficient lighting spectrum and elevated CO2 concentration for cultivating healthier plants more rapidly. One of the aims of our study is to optimize LEDs light spectrum for healthier vegetable production in greenhouses and maximum economical benefits for growers. The impact of elevated carbon dioxide (CO2) concentration on antioxidant and nutritional properties of green leaf ‘Multigreen 3’ and red leaf ‘Multired 4’ baby leaf lettuce (Lactuca sativa L.), grown under optimized light spectrum was investigated. COconcentrations of 0.963 g · dm-3 and 1.938 g · dm-3 were maintained in the growth chambers.
Lettuce was grown under four wavelength (640, 455, 660 and 735 nm) light-emitting diode based (LED) illumination. Under 0.963 g · dm-3 CO2 conditions, ‘Multired 4’ lettuce represented higher antioxidant value due to higher ascorbic acid, anthocyanin, tocopherol contents and higher sucrose concentration, as compared to ‘Multigreen 3’ lettuce. Higher CO2 concentration (1.938 g · dm-3) had uneven effect on the quality of both baby leaf lettuce cultivars. Red leaf lettuce reacted to the higher CO2 level by lowered  tocopherol, ascorbic acid concentrations and significantly higher glucose contents in their leaves, when green leaf lettuce – contrarily – contained higher ascorbic acid and  tocopherol concentrations under 1.938 g · dm-3 of CO2.

References

Ainsworth E.A., Rogers A., 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270.
Brazaitytė A., Ulinskaitė R., Duchovskis P., Samuolienė G., Šikšnianienė J.B., Jankauskienė J., Šabajevienė G., Baranauskis K., Stanienė G., Tamulaitis G., Bliznikas Z., Žukauskas A., 2006. Optimization of lighting spectrum for photosynthetic system and productivity of lettuce by using light-emitting diodes. Acta Horticult. 711, 183–188.
Cheeseman J.M., 2006. Hydrogen peroxide concentrations in leaves under natural conditions. J. Exp. Bot. 57, 2435–2444.
Fernandez-Orozco R., Zieliński H., Piskuła M.K., 2003. Contribution of low-molecular-weight antioxidants to the antioxidant capasity of raw and processed lentil seeds. Nahrung/Food 47, 291–299.
Gavrilenko V.F., Zigalova T.V., 2003. Practice in photosynthesis. Moscow. Goins G.D., Yorio N.C., Sanwo M.M., Brown C.S., 1997. Photomorphogenesis, photosynthesis,
and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J. Exp. Bot. 48, 1407–1413.
Gruda N., 2005. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit. Rev. Plant Sci. 24, 227–247.
Ilieva I., Ivanova T., Naydenov Y., Dandolov I., Stefanov D., 2010. Plant experiments with lightemitting diode module in Svet space greenhouse. Advanced Space Res. 46, 840–845.
Janghel E.K., Gupta V.K., Rai M.K., Rai J.K., 2007. Micro determination of ascorbic acid using methyl viologen. Talanta 72, 1013–1016.
Juknys R., Duchovskis P., Sliesaravičius A., Šlepetys J., Januškaitienė I., Brazaitytė A., Ramaškevičienė A., Lazauskas S., Dėdelienė K., Sakalauskaitė J., Juozaitytė R., Kadžiulienė Ž., Dikšaitytė A., 2011. Response of different agricultural plants to elevated CO2 and air temperature. Žemdirbystė-Agriculture 98, 3, 259–266.
Kuan-Hung L., Meng-Yuan H., Wen-Dar H., Ming-Huang H., Zhi-Wei Y., Chi-Ming Y., 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Horticult. 150, 86–91
Li Q., Kubota C., 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 67, 59-64.
Lindhout P., Pet G., 1990. Effects of CO2 enrichment on young Plant growth of 96 genotypes of tomato (Lycopersicon esculentum). Euphytica 51(2), 191–196.
Massa G.D., Kim H.H., Wheeler R.M., Mitchell C.A., 2008. Plant productivity in response to LED lighting. HortSci. 43(7), 1951–1956.
Mitchell C.A., Both A.J., Bourget C.M., Burr J.F., Kubota C., Lopez R.G., Morrow R.C., Runkle E.S, 2012. LEDs: The future of greenhouse lighting! Chronica Horticult. 52, 6–12.
Moe R., Grimstad S.O., Gsilerød H.R., 2006. The use of artificial light in year round production of greenhouse crops in Norway. Acta Horticult. 711, 35–42.
Poorter H., Pérez-Soba M., 2003. The Earth system: biological and ecological dimensions of global environmental change. Wiley, 2, 489–496.
Qiu Q.S., Huber J.L., Booker F.L., Jain V., Leakey A.D., Fiscus E.L., Yau P.M., Ort D.R., Huber S.C., 2008. Increased protein carbonylation in leaves of Arabidopsis and soybean in response to elevated (CO2). Photosynth. Res. 97, 155–66.
Ragaee S., Abdel-Aal E.M., Maher N., 2006. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem. 95, 32–38.
Rao M.V., Hale B.A., Ormrod D.P., 1995. Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide. Plant Physiol. 109, 421–432.
Saebo A., Krekling T., Appelgren M., 1995. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tiss Org. 41, 177–185.
Samuolienė G., Sirtautas R., Brazaitytė A., Duchovskis P., 2012. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 134, 1494–1499.
Spaargaren Ir. J.J., 2001. Supplemental lighting for greenhouse crop. Ontario, Canada, 178.
Stanciu G., Lupşor S., Sava C., 2009. Spectrophotometric characterizations of anthocyans extracted from black grapes skin. Ann. Chem. 20(2), 205–208.
Tamulaitis G., Duchovskis P., Bliznikas Z., Breivė K., Ulinskaitė R., Brazaitytė A., Novičkovas A., Žukauskas A., 2005. High power light-emitting diode based facility for plant cultivation. J. Physics. D: Applied Physics 38, 3182–3187.
Tamulaitis G., Duchovskis P., Bliznikas Z., Breivė K., Ulinskaitė R., Brazaitytė A., Novičkovas A., Žukauskas A., 2004. High-power solid-state lighting facility for greenhouse vegetable cultivation. Institute of Physics Conference Ser. 182, 317–318.
Urbonavičiūtė A., Samuolienė G., Sakalauskaitė J., Duchovskis P., Brazaitytė A., Šikšnianienė J.B, Ulinskaitė R., Šabajevienė G., Baranauskis K., 2006. The Effect of Elevated CO2 Concentrations on leaf carbohydrate, chlorophyll contents and photosynthesis in radish. Pol. J. Environ. Stud. 15(6), 921–925.
Vurro E., Bruni R., Bianchi A. Sanitá di T.L., 2009. Elevated atmospheric CO2 decreases oxidative stress and increases essential oil yield in leaves of Thymus vulgaris grown in a mini-FACE system. Environ. Exp. Bot. 65, 99–106.
Wang, S.Y. 2006. Effect of pre-harvest conditions on antioxidant capacity in fruits. ISHS Acta Horticulturae 712, 299-306.
Wheeler R.M., 2008. Historical background of plant lighting: an introduction to the workshop. HortSci. 43, 1942–1943.
Wu M.C., Hou C.Y., Jiang C.M., Wang C.H., Chen H.H., Chang H.M., 2007. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 101, 1753–1758.
Wustman B.A., Oksanen E., Karnosky D.F., Noormets A., Isebrands J.G., Pregitzer K.S., Hendrey G.R., Sober J., Podila G.K., 2001. Effects of elevated CO2 and O3 on aspen clones varying in O3 sensitivity: can CO2 ameliorate the harmful effects of O3? Environ Pollut. 115, 473–81.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 15 16 17 18 19 20 21 22 23 24 > >> 

You may also start an advanced similarity search for this article.