Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 6 (2022)

Articles

Role of biocontrol agents in weed management – recent developments and trends

DOI: https://doi.org/10.24326/asphc.2022.6.13
Submitted: November 28, 2020
Published: 2022-12-30

Abstract

Within integrated pest management programs, biological control of unwanted plants has remarkable capacity to provide viable, effective, and economic control of weeds. When using bio-herbicides, crop production and quality improve with virtually no damage to the ecosystem. Bioherbicides are target-specific, destroy only selected weeds that have been sprayed for and do not cause harm to non-target plants. Bio-herbicides can be quickly incorporated into weed control programs, which can reduce chemical herbicide dependence. We are also raising the chance of environmental pollution by pesticides. There are only a few bio-herbicides available on commercial bases although work began earlier in the 1940s. Sources of commercialized bioherbicides include Phytophthora palmivora (Devine), Collectotrichum gleosporiodes (Collego), Colletotrichum gloeosporioides (Binomial) and Streptomyces viridochromogenes (Bialaphos and Glufosinate). Virulence for pathogens and their environmental requirement are major constraints for bioherbicide development. Specific bio-herbicides should be useful in finding position in irrigated fields, wildlife while thriving weeds with pests or resistant weed control.

References

  1. Amsellem, Z., Sharon, A., Gressel, J., Quimby, P.C. Jr. (1990). Complete abolition of high inoculum threshold of two mycoherbicides (Alternaria cassiae and A. crassa) when applied in invert emulsion. Phytopathology, 80(10), 925–929. DOI: https://doi.org/10.1094/Phyto-80-925
  2. Aneja, K.R., Khan, S.A., Aneja, A. (2017). Bioherbicides: Strategies, challenges and prospects. In: Developments in fungal biology and applied mycology, Satyanarayana, T., Deshmukh, S., Johri, B. (eds.). Springer, Singapore, 449–470. DOI: https://doi.org/10.1007/978-981-10-4768-8_23
  3. Ani, O., Onu, O., Okoro, G., Uguru, M. (2018). Overview of biological methods of weed control. In: Biological approaches for controlling weeds, Radhakrishnan, R. (ed.),. IntechOpen, London. https://doi.org/10.5772/intechopen.76219 DOI: https://doi.org/10.5772/intechopen.76219
  4. Auld, B.A., Hetherington, S.D., Smith, H.E. (2003). Advances in bioherbicide formulation. Weed Biol. Manag., 3(2), 61–67. https://doi.org/10.1046/j.1445-6664.2003.00086.x DOI: https://doi.org/10.1046/j.1445-6664.2003.00086.x
  5. Bailey, K.L. (2014). The bioherbicide approach to weed control using plant pathogens. In: Integrated Pest Management: Current Concepts and Ecological Perspective, Abrol, D.P. (ed.). Academic Press – Elsevier, 245–266. https://doi.org/10.1016/B978-0-12-398529-3.00014-2 DOI: https://doi.org/10.1016/B978-0-12-398529-3.00014-2
  6. Beckie, H.J. (2011). Herbicide-resistant weed management: focus on glyphosate. Pest Manag. Sci., 67, 1037–1048. https://doi.org/10.1002/ps.2195 DOI: https://doi.org/10.1002/ps.2195
  7. Beckie, H.J., Hall, L.M., Meers,S., Laslo, J.J., Stevenson, F.C. (2004). Management practices influencing herbicide resistance in wild oat. Weed Technol., 18(3), 853–859. https://www.jstor.org/stable/3989386 DOI: https://doi.org/10.1614/WT-03-124R
  8. Beckie, H., Brenzil, C., Holzgang, G. (2007a). Herbicide resistance testing (1996–2006): Results of samples submitted to the Crop Protection Lab, Saskatchewan Agriculture and Food Report to the Weed Sub-council, Saskatchewan Advisory Council on Soils & Agronomy Agriculture and Agri-Food Canada, Saskatoon, SK, pp. 22.
  9. Beckie, H., Leeson, J.Y., Thomas, A.G., Hall, L.M., Brenzil, C.A., Andrews, T., Brown, K.R., Van Acker, R.C. (2007b). Prairie weed survey of herbicide-resistant wild oat from 2001 to 2003. Weed Survey Series, Publ. 06-2. Agriculture and Agri-Food Canada, Saskatoon, SK, pp. 49.
  10. Beckie, H., Julia, J., Leeson, Y., Thomas, A.G., Brenzil, C.A. (2008a). Weed resistance monitoring in the Canadian Prairies. Weed Technol., 22(3), 530–543. https://doi.org/10.1614/WT-07-175.1 DOI: https://doi.org/10.1614/WT-07-175.1
  11. Beckie, H.J., Julia, Y., Leeson, A., Thomas, G., Hall, L.M., Brenzil, C.A. (2008b). Risk assessment of weed resistance in the Canadian Prairies. Weed Technol., 22(4), 741–746. https://www.jstor.org/stable/25195117 DOI: https://doi.org/10.1614/WT-08-071.1
  12. Beckie, H.J., Ashworth, M.B., Flower, K.C. (2019). Herbicide resistance management: recent developments and trends. Plants, 8(6), 161. https://doi.org/10.3390/plants8060161 DOI: https://doi.org/10.3390/plants8060161
  13. Berestetskiy, A., Sokornova, S. (2018). Production and stabilization of mycoherbicides, biological approaches for controlling weeds. In: Biological Approaches for Controlling Weeds, Radhakrishnan, R. (ed.). IntechOpen, London. https://doi.org/10.5772/intechopen.76936 DOI: https://doi.org/10.5772/intechopen.76936
  14. Boyette, C.D., Hoagland, R.E., Weaver, M.A., Stetina, K. (2012). Biological Control Potential of Colletotrichum gloeosporioides for Coffee Senna (Cassia occidentalis). Am. J. Plant Sci., 3(4), 430–436. http://dx.doi.org/10.4236/ajps.2012.34052 DOI: https://doi.org/10.4236/ajps.2012.34052
  15. Cai, X., Gu, M. (2016). Bioherbicides in organic horticulture. Horticulturae, 2(2). 3. https://doi.org/10.3390/horticulturae2020003 DOI: https://doi.org/10.3390/horticulturae2020003
  16. Carbonari, C.A., Latorre, D.O., Gomes, G.L., Velini, E.D., Owens, D.K., Pan, Z., Dayan, F.E. (2016). Resistance to glufosinate is proportional to phosphinothricin acetyltransferase expression and activity in LibertyLink(®) and WideStrike(®) cotton. Planta, 243(4), 925–933. https://doi.org/10.1007/s00425-015-2457-3 DOI: https://doi.org/10.1007/s00425-015-2457-3
  17. Charudattan, R. (2001). Biological control of weeds by means of plants pathogens: Significance for integrated weed management in modern agro-ecology. Biocontrol, 46, 229–260. https://doi.org/10.1023/A:1011477531101 DOI: https://doi.org/10.1023/A:1011477531101
  18. Charudattan, R., Prange, V.J., Devalerio, J.T. (1996). Exploration of the use of the “Bialaphos Genes” for improving bioherbicide efficacy. Weed Technol., 10(3), 625–636. https://www.jstor.org/stable/3988166 DOI: https://doi.org/10.1017/S0890037X00040550
  19. Cordeau, S., Triolet, M., Wayman, S., Steinberg, C., Guillemin, J. (2016). Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. J. Crop Prot., 87, 44–49. https://doi.org/10.1016/j.cropro.2016.04.016 DOI: https://doi.org/10.1016/j.cropro.2016.04.016
  20. Dash, S., Sethi D. (2016). Benefits and constraints of using bioherbicide in weed management. Rashtriya Krishi, 1(2), 23–24
  21. Dayan, F.E., Duke, S.O. (2014). Natural compounds as next generation herbicides. Plant Physiol., 166(3), 1090. https://doi.org/10.1104/pp.114.239061 DOI: https://doi.org/10.1104/pp.114.239061
  22. El-Sayed, W. (2005). Biological control of weeds with pathogens: Current status and future trends. J. Plant. Dis. Prot., 112(3), 209–221. https://www.jstor.org/stable/45154904
  23. Fantke, P., Friedrick, R., Jolliet, O. (2012). Health impact and damage cost assessment of pesticides in Europe. Environ. Int., 49(15), 9–17. https://doi.org/10.1016/j.envint.2012.08.001 DOI: https://doi.org/10.1016/j.envint.2012.08.001
  24. Gelvin, S.B. (2003). Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev., 67(1), 16–37. https://doi.org/10.1128%2FMMBR.67.1.16–37.2003 DOI: https://doi.org/10.1128/MMBR.67.1.16-37.2003
  25. Gerwick, B.C., Sparks, T.C. (2014). Natural products for pest control: An analysis of their role, value and future. Pest Manag. Sci., 70(8), 1169–1185. https://doi.org/10.1002/ps.3744 DOI: https://doi.org/10.1002/ps.3744
  26. Green, S. (2003). A review of the potential for the use of bioherbicides to control forest weeds in the UK. Forestry, 76(3), 285–298. https://doi.org/10.1093/forestry/76.3.285 DOI: https://doi.org/10.1093/forestry/76.3.285
  27. Hajek, A., Eilenberg, J. (2018). Biological control of weeds. In: Natural Enemies: An Introduction to Biological Control, Hajek, A.. Cambridge University Press, Cambridge, 243–288. DOI: https://doi.org/10.1017/9781107280267
  28. Harding, D.P., Raizada, M.N. (2015). Controlling weeds with fungi, bacteria and viruses: a review. Front. Plant Sci., 6, 659. https://doi.org/10.3389/fpls.2015.00659 DOI: https://doi.org/10.3389/fpls.2015.00659
  29. Hoagland, R.E., Boyette, C.D., Weaver, M.A., Abbas, H.K. (2007). Bioherbicides: research and risks. Toxin Rev., 26(4), 313–342. https://doi.org/10.1080/15569540701603991 DOI: https://doi.org/10.1080/15569540701603991
  30. Keren, I.N., Menalled, F.D., Weaver, D.K., Robison-Cox, J.F. (2015). Interacting agricultural pests and their effect on crop yield: application of a Bayesian decision theory approach to the joint management of Bromus tectorum and Cephus cinctus. PloS One, 10(2), e0118111. https://doi.org/10.1371/journal.pone.0118111 DOI: https://doi.org/10.1371/journal.pone.0118111
  31. Kremer, R.J. (2019). Bioherbicides and nanotechnology: Current status and future trends. In: Nano-Biopesticides Today and Future Perspectives, Koul, O. (ed.). Academic Press, Insect Biopesticide Research Centre, Jalandhar, India, 353–366. http://dx.doi.org/10.1016/B978-0-12-815829-6.00015-2 DOI: https://doi.org/10.1016/B978-0-12-815829-6.00015-2
  32. Leeson, J.Y., Thomas, A.G. (2008). Impacts of direct seeding – weed dynamics. Proc. (2008) Saskatchewan Soil Conservation Association Annual Conference, Fuelling the Farm Indian Head, SK, 21–27.
  33. Légère, A., Beckie, H.J., Stevenson, F.C., Thomas, A.G. (2000). Survey of management practices affecting the occurrence of wild oat (Avena fatua) resistance to acetyl-CoA carboxylase inhibitors. Weed Technol., 14(2), 366–376. https://www.jstor.org/stable/3988843 DOI: https://doi.org/10.1614/0890-037X(2000)014[0366:SOMPAT]2.0.CO;2
  34. Leghari, S.J., Leghari, U.A., Laghari, G.M., Buriro, M., Soomro, F.A. (2016). An overview on various weed control practices affecting crop yield. J. Chem. Biol. Phys. Sci., 6(1), 59–69.
  35. Masi, M., Freda, F., Sangermano, F., Calabrò, V., Cimmino, A., Cristofaro, M., Meyer, S., Evidente, A. (2019). Radicinin, a fungal phytotoxin as a target-specific bioherbicide for invasive buffelgrass (Cenchrus ciliaris) control. Molecules, 24(6), 1086. https://doi.org/10.3390/molecules24061086 DOI: https://doi.org/10.3390/molecules24061086
  36. Mohammadi, G.R. (2013). Alternative weed control methods: a review. In: Weed and pest control – conventional and new challenges, Soloneski, S., Larramendy, M. (eds.). IntechOpen. https://doi.org/10.5772/54164 DOI: https://doi.org/10.5772/54164
  37. Nazarko, O.M., Acker, R.C.V., Entz, M.H. (2005). Strategies and tactics for herbicide use reduction in field crops in Canada: a review. Can. J. Plant Sci., 85, 457–479. https://doi.org/10.4141/P04-158 DOI: https://doi.org/10.4141/P04-158
  38. Oerke, E.C. (2006). Centenary review: Crop losses to pests. J. Agric. Sci., 144, 31–43. DOI: https://doi.org/10.1017/S0021859605005708
  39. Ortiz-Ribbing, L., Williams, M.M. (2006). Potential of Phomopsis amaranthicola and Microsphaeropsis amaranthi as bioherbicides for several weedy Amaranthus species. J. Crop Protect., 25, 39–46. https://doi.org/10.1016/j.cropro.2005.03.021 DOI: https://doi.org/10.1016/j.cropro.2005.03.021
  40. Pacanoski, Z. (2015). Bioherbicides. In: Herbicides: Physiology of Action, and Safety, Price, A., Kelton, J., Sarunaite L. (eds.). IntechOpen. https://doi.org/10.5772/61528 DOI: https://doi.org/10.5772/61528
  41. Pakistan Agricultural Research Council Islamabad (2013). Wheat in Pakistan a status paper. Islamabad, Pakistan. https://www.readkong.com/page/wheat-in-pakistan-a-status-paper-5268688
  42. Pal, K.K., Gardener, B.M. (2006). Biological control of plant pathogens. Plant Health Instr. https://doi.org/101094/PHI-A-(2006)-1117-02 DOI: https://doi.org/10.1094/PHI-A-2006-1117-02
  43. Rao, V.S. (2000). Principles of weed science. Science Publishers, Enfield, New Hampshire, USA. DOI: https://doi.org/10.1201/9781482279603
  44. Rehman, A., Jingdong, L., Shahzad, B., Chandio, A.A., Hussain, I., Nabi, G., Iqbal, M.S. (2015). Economic perspectives of major field crops of Pakistan: An empirical study. Pac. Sci. Rev. B: Hum. Soc. Sci., 1, 145e158. https://doi.org/10.1016/j.psrb.2016.09.002 DOI: https://doi.org/10.1016/j.psrb.2016.09.002
  45. Rodenburg, J., Demont, M., Zwart, S.J., Bastiaans, L. (2016). Parasitic weed incidence and related economic losses in rice in Africa. Agric. Ecosyst. Environ., 235, 306–317. https://doi.org/10.1016/j.agee.2016.10.020 DOI: https://doi.org/10.1016/j.agee.2016.10.020
  46. Saritha, M., Tollamadugu, N.V.K.V.P. (2019). The status of research and application of biofertilizers and biopesticides: global scenario. In: Recent Developments in Applied Microbiology and Biochemistry, Buddolla, V. (ed.). Academic Press, 195–207. https://doi.org/10.1016/B978-0-12-816328-3.00015-5 DOI: https://doi.org/10.1016/B978-0-12-816328-3.00015-5
  47. Shabana, Y.M., Stiles, C.M., Charudattan, R., Tabl, A.H.A. (2010). Evaluation of bioherbicidal control of tropical signalgrass, crabgrass, smutgrass, and torpedograss. Weed Technol., 24(2), 165–172. https://doi.org/10.1614/WT-09-065.1 DOI: https://doi.org/10.1614/WT-09-065.1
  48. Sims, B., Corsi, S., Gbehounou, G., Kienzle, J., Taguchi, M., Friedrich, T. (2018). Sustainable weed manage-ment for conservation agriculture: Options for smallholder farmers. Agriculture, 8(8), 118. https://doi.org/10.3390/agriculture8080118 DOI: https://doi.org/10.3390/agriculture8080118
  49. Singh, H.P., Batish, D.R., Kohli, R.K. (2006). Weeds and their management: Rationale and approaches. In: Handbook of Sustainable Weed Management, Singh, H.P., Batish, D.R., Kohli, R.K. (eds.). Haworth Press, New York, 1–20. DOI: https://doi.org/10.1201/9781482293593
  50. Sporleder, M., Lacey, L. (2013). Biopesticides. In: Insect pests of potato. Global Perspectives on Biology and Management, Giordanengo, P., Vincent, C., Alyokhin, A. (eds.). Elsevier, Oxford,UK), 463–497. https://doi.org/10.1016/B978-0-12-386895-4.00016-8 DOI: https://doi.org/10.1016/B978-0-12-386895-4.00016-8
  51. Templeton, G.E., Heiny, D.I. (1989). Improvement of fungi to enhance mycoherbicide potential. In: Biotechnology of Fungi for Improving Plant Growth, Whipps, J.M., Lumsden, R.D. (eds.). Cambridge University Press, Cambridge,17–152.
  52. Thomas, A.G., Derksen, D.A., Blackshaw, R.E., Acker, R.C.V., Légère, A., Watson, P.R., Turnbull, G.C. (2004). A multi study approach to understanding weed population shifts in medium- to long-term tillage systems. Weed Sci., 52, 874–880. https://doi.org/10.1614/WS-04-010R1 DOI: https://doi.org/10.1614/WS-04-010R1
  53. Watson, A.K., Wymore, L.A. (1989). Biological control, a component of integrated weed management. Proc. VII International Symposium of Biological Control of Weeds, Rome, Italy, 101–106.
  54. Womack, J.G., Eccleston, G.M., Burge, M.N. (1996). A vegetable oil-based invert emulsion for mycoherbicide delivery. Biol. Control, 6(1), 23–28. https://doi.org/10.1006/bcon.1996.0003 DOI: https://doi.org/10.1006/bcon.1996.0003
  55. Xu, Z., Shi, M., Tian, Y., Zhao, P., Niu, Y., Liao, M. (2019). Dirhamnolipid produced by the pathogenic fungus Colletotrichum gloeosporioides BWH-1 and its herbicidal activity. Molecules, 24(16), 2969. https://doi.org/10.3390/molecules24162969 DOI: https://doi.org/10.3390/molecules24162969
  56. Yamane, T., Tanaka, R. (2013). Mass production of spores of lactic acid-producing Rhizopus oryzae NBRC 5384 on agar plate. Biotechnol. Prog., 29(4), 876–81. https://doi.org/10.1002/btpr.1744 DOI: https://doi.org/10.1002/btpr.1744

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.