Skip to main navigation menu Skip to main content Skip to site footer

Vol. 12 No. 4 (2013)

Articles

THE EFFECT OF Monilinia seaveri (Rehm) Honey INFECTION ON THE CONDENSED TANNINS CONTENT IN THE LEAVES OF Prunus serotina Ehrh

Submitted: December 15, 2020
Published: 2013-08-31

Abstract

The incidence of natural enemies of plants triggers in them a number of defensive reactions. In spite of many studies, the role of phenolic compounds in tree-pathogen interactions, has been still ambiguous. The aim of the present study has been to analyse the tannin content in the leaves of the black cherry (Prunus serotina) infested, to a different degree, by Monilinia seaveri. The observations of the health status of the leaves were carried out on marked trees for two years. The pathogen was identified based on the material obtained from laboratory cultures. The tannin content, expressed as (+)-catechin, was determined using the vanillin method. The greatest extent of disease development was observed at the end of July. It has been found that with disease symptoms covering > 25% of
the leaf area, the (+)-catechin content in the diseased leaves was significantly higher compared to the healthy ones. The obtained results thus indicate, that at the damage level exceeding approximately 25% of the leaf area, mechanisms of the induced resistance are triggered in plants, that may prevent the further development of disease.

References

Agrios G.N., 1997. Plant Pathology. Academic Press San Diego.
Batra L.R., 1991. World species of Monilinia (fungi). Their ecology, biosystematics and control. NYBG, Collaborators, Mycol. Soc. Am. 9, 1–246.
Bonello P., Gordon T.R., Herms D.A., Wood D.L., Erbilgin N., 2006. Nature and ecological implications of pathogen-induced systemic resistance in conifers, a novel hypothesis. Physiol. Mol. Plant P. 68, 95–104.
Broadhurst R.B, Jones W.T., 1978. Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agr. 29, 788–794.
Brignolas F., Lacroix B., Lieutier F., Sauvard D., Drouet A., Claudot A.C., Yart A., Berryman A.A., Christiansen E., 1995. Induced responses in phenolic metabolism in two Norway spruce clones after wounding and inoculations with Ophiostoma polonicum, a bark beetle-associated fungus. Plant Physiol. 109, 821–827.
Buchalter L., 1969. Identification of monomeric and polymeric 5,7,3’,4’-tetrahydroxyflavan-3,4--diol from tannin extract of wild cherry bark USP, Prunus serotina Erhart, family Rosaceae. J. Pharm. Sci. 58, 1272–1273.
Cushnie T.P.T., Lamb A.J., 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Ag. 26, 343–356.
Davis S.S., 1998. Plant secondary metabolism. Kluwier Acad. Publ., Massachusetts.
Evensen P.C., Solheim H., Høiland K., Stenersen J., 2000. Induced resistance of Norway spruce, variation of phenolic compounds and their effects on fungal pathogens. Forest Pathol. 30, 97–108.
Grzebyta J., Karolewski P., Żytkowiak R., Giertych M.J., Werner A., Zadworny M., Oleksyn J., 2005.
Effects of elevated temperature and fluorine pollution on relations between the pedunculate oak (Quercus robur) and oak powdery mildew (Microsphaera alphitoides). Dendrobiology 53, 27–33.
Hakulinen J., 1998. Nitrogen-induced reduction in leaf phenolic level is not accompanied by increased rust frequency in a compatible willow (Salix myrsinifolia) – Melampsora rust interaction. Physiol. Plantarum 102, 101–110.
Hakulinen J., Sorjonen S., Julkunen-Tiitto R., 1999. Leaf phenolics of willow clones differing in resistance to Melampsora rust. Physiol. Plant. 105, 662–669.
Hakulinen J., Julkunen-Tiitto, R., 2000. Variation in leaf phenolics of field cultivated willow (Salix myrsinifolia Salisb.) clones in relation to occurrence of Melampsora rust. Eur. J. For. Path. 30, 29–41.
Halarewicz A., 2011. Tissue localization of the condensed tannins in the leaves of the black cherry, Prunus serotina Ehrh. EJPAU, Biology, 14 (4), #01.
Halarewicz A, Pląskowska E., 2011. Czeremcha amerykańska Prunus serotina Ehrh. gospodarzem Monilinia seaveri (Rehm) Honey Honey. Zesz. Probl. Post. Nauk Roln. 562, 65–70.
Hammerschmidt R., 2005. Phenols and plant-pathogen interactions, the saga continues. Physiol. Mol. Plant P. 66, 77–78.
Harborne J.B., 1993. Introduction to ecological biochemistry. Academic Press Limited, London.
Harborne J.B., Baxter H., 1999. The handbook of natural flavonoids. Willey, Chichester.
Haukioja E., Koricheva J., 2000. Tolerance to herbivory in woody vs. herbivorous plants. Evol. Ecol. 14, 551–562.
Heath M.C., 2000. Hypersensitive response-related death. Plant Mol. Biol. 4, 321–334.
Hereźniak J., 1992. Amerykańskie drzewa i krzewy na ziemiach polskich. W: Rośliny pochodzenia amerykańskiego zadomowione w Polsce, Ławrynowicz M., Warcholińska A.U. (red.). ŁTN, Szlakami Nauki 19, 97–150.
Jensen W.A., 1962. Botanical histochemistry. Principles and practice. Freeman and Co., San Francisco and London.
Kombrink E., Schmelzer E., 2001. The hypersensitive response and its role in local and systemic disease resistance. Eur. J. Plant Path. 107, 69–78.
Kuć J., 1982. Induced immunity to plant disease. Bioscience 32, 854–860.
Kuć J., 2001. Concepts and direction of induced systemic resistance in plants and its application. Eur. J. Plant Pathol. 107, 7–12.
Lewis N.G., Yamamoto E., 1989. Tannins – Their place in plant metabolism. In: Chemistry and significance of condensed tannins. Hemingway R.W., Karchesy J.J. (eds.). Plenum Press, New York, pp. 23–46.
Lieutier F., Brignolas F., Sauvard D., Yart A., Galet C., Brunet M., van de Sype H., 2003. Intraand inter-provenance variability in phloem phenols of Picea abies and relationship to a bark beetle-associated fungus. Tree Physiol. 23, 247–56.
Martin-Tanguy J., 1997. Conjugated polyamines and reproductive development, biochemical, molecular and physiological approaches. Physiol. Plantarum 100, 675–688.
Min B.R., Pinchak W.E., Merkel R., Walker S., Tomita G., Anderson R.C., 2008. Comparative antimicrobial activity of tannin extracts from perennial plants on mastitis pathogens. Sci. Res. Essays 3, 66–73.
Porter L.J., 1989. Tannins. Methods Plant Biochem 1, 38–419.
Pospieszny H., 2000. Nabyta odporność systemiczna roślin na patogeny – od nauki do praktyki. Post. Nauk Roln. 5, 27–42.
Riipi M., Ossipov V., Lempa K., Haukioja E., Koricheva J., Ossipova S., Pihlaja K., 2002. Seasonal changes in birch leaf chemistry, are there trade-offs between leaf growth and accumulation of phenolics? Oecologia 130, 380–390.
Siciński J.T., 1992. Amerykańskie rośliny uprawne w Polsce. W: Rośliny pochodzenia amerykańskiego zadomowione w Polsce, M. Ławrynowicz, A.U. Warcholińska (red.), ŁTN, Szlakami Nauki 19, 151–180.
Starfinger U., 1997. Introduction and naturalization of Prunus serotina in Central Europe. In: Starfinger U., Edwards K., Kowarik I., Williamson M. (eds.), 1998. Plant Invasions: Ecological mechanisms and human responses. Backhuys Publishers, Leiden, The Netherlands, 161–171.
Tomalak M., 2006. Citizen’s perception of trees, tree pests and pest management-related activity in urban parks and forests. Prog. Plant Prot. 46, 337–343.
Witzell J., Martin J.A., 2008. Phenolic metabolites in the resistance of northern forest trees to pathogens – past experiences and future prospects Can. J. Forest Res. 38, 2711–2727.
Złotek U., Wójcik W., 2007. Wybrane aspekty nabywania u roślin odporności typu SAR. Acta Sci. Pol. Biotechnol. 6, 3–12.
Żmuda M., Karolewski P., Giertych M.J., Żytkowiak R., Bąkowski M., Grzebyta J., Oleksyn J., 2008. The effect of light conditions on leaf injury in underbrush shrubs caused by leaf-eating insects. Acta Sci. Pol. Silv. Colendar. Rat. Ind. Lignar. 7, 47–57.

Downloads

Download data is not yet available.

Similar Articles

<< < 17 18 19 20 21 22 23 24 > >> 

You may also start an advanced similarity search for this article.