Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 1 (2022)

Articles

Antifungal activity of Mentha × Piperita L. essential oil

DOI: https://doi.org/10.24326/asphc.2022.1.12
Submitted: May 23, 2021
Published: 2022-02-28

Abstract

The objective of this study was to investigate the chemical composition and in vitro antifungal activity of Mentha × Piperita L. (peppermint) essential oil (EO) against some plant pathogenic fungi (Alternaria alternata, Penicillium expansum, Rhizoctonia solani, and Rhizopus stolonifer). Antifungal activity of EO against the selected fungi was conducted using the agar diffusion method by adding peppermint EO concentrations (0, 250, 500, 750, 1000, and 2000 ppm). The gas chromatography-mass spectrometry (GC-MS) analysis of peppermint EO showed that the main constituent was menthol (36.4%), followed by menthone (27.7%) and menthyl acetate (11.2%). The mycelium growth of the selected fungi was significantly inhibited by peppermint EO. Light and electron microscopy studies showed that mycelium morphology was seriously changed after treatment with peppermint essential oil. The level of malondialdehyde illustrated that peppermint EO led to lipid peroxidation in the fungal pathogens. Therefore, due to its antifungal properties, peppermint EO can be used as an additive in the food industry and as an active substance in pharmaceuticals.

References

  1. Adams, R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry, 4th ed. Allured Publ. Corp., Carol Stream, Illinois, USA.
  2. Al Yousef, S.A. (2013). Antifungal activity of volatiles from lemongrass (Cymbopogon citratus) and peppermint (Mentha piperita) oils against some respiratory pathogenic species of Aspergillus. Int. J. Curr. Microbiol. App. Sci., 2(6), 261–272.
  3. Ansari, M.A., Vasudevan, P., Tandon, M., Razdan, R.K. (2000). Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. Bioresour. Technol., 71(3), 267–271. https://doi.org/10.1016/S0960-8524(99)00079-6 DOI: https://doi.org/10.1016/S0960-8524(99)00079-6
  4. Bendaoud, H., Bouajila, J., Rhouma, A., Savagnac, A., Romdhane, M. (2009). GC/MS analysis and antimicrobial and antioxidant activities of essential oil of Eucalyptus radiata. J. Sci. Food Agric., 89(8), 1292–1297. http://dx.doi.org/10.1002/jsfa.3585 DOI: https://doi.org/10.1002/jsfa.3585
  5. Charai, M., Faid, M., Mosaddak, M. (1996). Chemical composition and antimicrobial activities of two aromatic plants: Origanum majorana L. and O. compactum Benth. J. Essent. Oil Res., 8(6), 657–664. DOI: https://doi.org/10.1080/10412905.1996.9701036
  6. Desam, N.R., Al-Rajab, A.J., Sharma, M., Mylabathula, M.M., Gowkanapalli, R.R., Albratty, M. (2019). Chemical constituents, in vitro antibacterial and antifungal activity of Mentha × piperita L. (peppermint) essential oils. J. King Saud Univ.-Sci., 31(4), 528–533. https://doi.org/10.1016/j.jksus.2017.07.013 DOI: https://doi.org/10.1016/j.jksus.2017.07.013
  7. Frampton, A. (2009). The Complete Illustrated Book of Herbs. Reader’s Digest Assoc., Canada.
  8. França, K.R.S., Silva, T.L., Cardoso, T.A.L., Ugulino, A.L.N., Rodrigues, A.P.M., de Mendonça Júnior, A.F. (2018). In vitro effect of essential oil of peppermint (Mentha × piperita L.) on the mycelial growth of Alternaria alternata. J. Exp. Agric. Int., 1–7. http://dx.doi.org/10.9734/JEAI/2018/44243 DOI: https://doi.org/10.9734/JEAI/2018/44243
  9. Gakuubi, M.M., Maina, A.W., Wagacha, J.M. (2017). Antifungal activity of essential oil of Eucalyptus camaldulensis Dehnh. against selected Fusarium spp. Int. J. Microbiol., 2017, 8761610. https://doi.org/10.1155/2017/8761610 DOI: https://doi.org/10.1155/2017/8761610
  10. He, L., Liu, Y., Mustapha, A., Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res., 166(3), 207–215. http://dx.doi.org/10.1016/j.micres.2010.03.003 DOI: https://doi.org/10.1016/j.micres.2010.03.003
  11. Hussain, A.I., Anwar, F., Sherazi, S.T.H., Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem., 108(3), 986–995. http://dx.doi.org/10.1016/j.foodchem.2007.12.010 DOI: https://doi.org/10.1016/j.foodchem.2007.12.010
  12. İşcan, G., Ki̇ri̇mer, N., Kürkcüoǧlu, M., Başer, H.C., Demirci, F. (2002). Antimicrobial screening of Mentha piperita essential oils. J. Agric. Food Chem., 50(14), 3943–3946. DOI: https://doi.org/10.1021/jf011476k
  13. Jing, G.-X., Tao, N.-G., Jia, L., Zhou, H.-E. (2015). Influence of α-terpineol on the growth and morphogenesis of Penicillium digitatum. Bot. Stud., 56(1), 35. https://doi.org/10.1186/s40529-015-0116-4 DOI: https://doi.org/10.1186/s40529-015-0116-4
  14. Kostik, V., Gjorgjeska, B., Petkovska, S. (2015). Mentha L. essential oils composition and in vitro antifungal activity. IOSR J. Pharm., 5(7), 1–7.
  15. Lee, H.J., Choi, G.J., Cho, K.Y. (1998). Correlation of lipid peroxidation in Botrytis cinerea caused by dicarboximide fungicides with their fungicidal activity. J. Agric. Food Chem., 46(2), 737–741. https://doi.org/10.1021/jf970501c DOI: https://doi.org/10.1021/jf970501c
  16. Liu, K., Zhou, X., Fu, M. (2017). Inhibiting effects of epsilon-poly-lysine (ε-PL) on Pencillium digitatum and its involved mechanism. Postharv. Biol. Technol., 123, 94–101. https://doi.org/10.1016/j.postharvbio.2016.08.015 DOI: https://doi.org/10.1016/j.postharvbio.2016.08.015
  17. Matan, N., Woraprayote, W., Saengkrajang, W., Sirisombat, N., Matan, N. (2009). Durability of rubberwood (Hevea brasiliensis) treated with peppermint oil, eucalyptus oil, and their main components. Int. Biodeter. Biodegrad., 63(5), 621–625. http://dx.doi.org/10.1016/j.ibiod.2008.12.008 DOI: https://doi.org/10.1016/j.ibiod.2008.12.008
  18. Mehani, M., Segni, L., Terzi, V., Morcia, C., Ghizzoni, R., Goudjil, M., Bencheikh, S. (2015). Antibacterial, antifungal activity and chemical composition study of essential oil of Mentha pepirita from the south Algerian. Der Pharma Chem., 7(12), 382–387.
  19. Nishiyama, Y., Takahata, S., Abe, S. (2017). Morphological effect of the new antifungal agent ME1111 on hyphal growth of Trichophyton mentagrophytes, determined by scanning and transmission electron microscopy. Antimicrob. Agents Chemother., 61(1), e01195-01216. https://dx.doi.org/10.1128/AAC.01195-16 DOI: https://doi.org/10.1128/AAC.01195-16
  20. de Oliveira Junior, E.N., de Melo, I.S., Franco, T.T. (2012). Changes in hyphal morphology due to chitosan treatment in some fungal species. Braz. Arch. Biol. Technol., 55(5), 637–646. https://doi.org/10.1590/S1516-89132012000500001 DOI: https://doi.org/10.1590/S1516-89132012000500001
  21. Pourmahdi, A., Taheri, P. (2015). Genetic diversity of Thanatephorus cucumeris infecting tomato in Iran. J. Phytopathol., 163(1), 19–32. https://doi.org/10.1111/jph.12276 DOI: https://doi.org/10.1111/jph.12276
  22. Ramezani, Y., Taheri, P., Mamarabadi, M. (2019). Identification of Alternaria spp. associated with tomato early blight in Iran and investigating some of their virulence factors. J. Plant Pathol., 101(3), 647–659. https://doi. org/10.1007/S42161-019-00259-W DOI: https://doi.org/10.1007/s42161-019-00259-w
  23. Romagnoli, C., Bruni, R., Andreotti, E., Rai, M.K., Vicentini, C.B., Mares, D. (2005). Chemical characterization and antifungal activity of essential oil of capitula from wild Indian Tagetes patula L. Protoplasma, 225(1–2), 57–65. https://doi.org/10.1007/s00709-005-0084-8 DOI: https://doi.org/10.1007/s00709-005-0084-8
  24. Salem, E.A., Youssef, K., Sanzani, S.M. (2016). Evaluation of alternative means to control postharvest Rhizopus rot of peaches. Sci. Hortic., 198(C), 86–90. http://dx.doi.org/10.1016/scienta.2015.11.013 DOI: https://doi.org/10.1016/j.scienta.2015.11.013
  25. Soković, M.D., Vukojević, J., Marin, P.D., Brkić, D.D., Vajs, V., van Griensven, L.J. (2009). Chemical composition of essential oilsof thymus and mentha speciesand their antifungal activities. Molecules, 14(1), 238–249. https://dx.doi.org/10.3390/molecules14010238 DOI: https://doi.org/10.3390/molecules14010238
  26. Souza, I.T.J., Sales, N.L.P., Martins, E.R. (2009). Efeito ungitóxico de óleos essenciais sobre Colletotrichum gloeosporioides, isolado do maracujazeiro amarelo [Fungitoxic effect of essential oils on Colletotrichum gloeosporioides, isolated from yellow passion fruit]. Biotemas, 22(3), 77–83 [in Portuguese]. https://doi.org/10.5007/2175-7925.2009v22n3p77 DOI: https://doi.org/10.5007/2175-7925.2009v22n3p77
  27. Ullah, M., Usman Khan, M., Mahmood, A., Malik, R.N., Hussain, M., Wazir, S.M., Daud, M., Shinwari, Z.S. (2013). An ethnobotanical survey of indigenous medicinal plants in Wana district south Waziristan agency, Pakistan. J. Ethnopharmacol. 150(3), 918–924. https://doi.org/10.1016/j.jep.2013.09.032 DOI: https://doi.org/10.1016/j.jep.2013.09.032
  28. Walker, J., Melin, J. (1996). Mentha × piperita, Mentha spicata and effects of their essential oils on Meloidogyne in soil. J. Nematol., 28(4S), 629–635.
  29. Xing, Y., Li, X., Xu, Q., Yun, J., Lu, Y. (2010). Antifungal activities of cinnamon oil against Rhizopus nigricans, Aspergillus flavus and Penicillium expansum in vitro and in vivo fruit test. Int. J. Food Sci. Technol., 45(9), 1837–1842. https://doi.org/10.1111/j.1365-2621.2010.02342.x DOI: https://doi.org/10.1111/j.1365-2621.2010.02342.x
  30. Yadegarinia, D., Gachkar, L., Rezaei, M.B., Taghizadeh, M., Astaneh, S.A., Rasooli, I. (2006). Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochem., 67(12), 1249–1255. https://doi.org/10.1016/j.phytochem.2006.04.025 DOI: https://doi.org/10.1016/j.phytochem.2006.04.025
  31. Yahyazadeh, M., Omidbaigi, R., Zare, R., Taheri, H. (2008). Effect of some essential oils on mycelial growth of Penicillium digitatum Sacc. World J. Microbiol. Biotechnol., 24(8), 1445–1450. http://dx.doi.org/10.1007/s11274-007-9636-8 DOI: https://doi.org/10.1007/s11274-007-9636-8

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 33 34 35 36 37 38 39 40 41 42 > >> 

You may also start an advanced similarity search for this article.