Skip to main navigation menu Skip to main content Skip to site footer

Vol. 15 No. 2 (2016)

Articles

EFFECT OF CLIMATE CHANGE ON SEASONAL FLIGHT ACTIVITY OF APHID MALES IN URBAN GREEN AREA

Submitted: October 27, 2020
Published: 2016-04-30

Abstract

In temperate climate zones, where a continental climate prevails, the appearance of males in populations of most aphid species takes place only in the autumn. Holocyclic and heteroecious species typically have winged males obligatorily. In holocyclic and monoecious species, males are not always winged morphs. Photoperiod is the primary factor responsible for the change in the manner of reproduction, from parthenogenetic to sexual, during the growth season, and temperature is a modifying one. The paper presents the results of many years of research on the activity of aphid male flights in characterizing species diversity, phenology of appearance and their number in urban green areas, carried out employing the Moericke’s yellow pan traps method. The research indicates a trend towards the decrease of male aphid species number over the course of the last decade, as a result of warmer weather conditions, in the years 2005–2014. The results of male catches of Rhopalosiphum padi (Linnaeus, 1761) – the most numerously represented species – prove that there is a relationship between their number in autumn and the number of days for which the average temperature exceeds 20ºC and rainfall occurs during the first decade of August. The very early appearance of Brachycaudus divaricatae Shaposhnikov, 1956 males in the season was an interesting phenomenon which is untypical for aphids in Poland.

References

Austin, A.B.M., Tatchell, G.M., Harrington, R., Bale, J.S. (1996). Adaptive significance of changes in morph production during the transition from parthenogenetic to sexual reproduction in the aphid Rhopalosiphum padi (Homoptera: Aphididae). Bull. Entomol. Res., 86, 93–99.
Bale, J., Masters, G., Hodkinson, I., Awmack, C., Bezemer, T., Brown, V., Butterfield, J., Buse, A., Coulson, J., Farrar, J. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol., 8, 1–16.
Blackman, R.L. (1971). Variation in the photoperiodic response within natural populations of Myzus persicae Sultz. Bull. Entomol. Res., 60, 533–546.
Blackman, R.L., Eastop, V.F. (1994). Aphids on the World’s Trees. An Identification and Information Guide. CAB International, Wallingford, UK.
Brodel, C.F., Schaefers, G.A. (1980). The influence of temperature on the production of sexual by Aphis rubicola under short-day conditions. Entomol. Exp. Appl. 27,127–132.
Dixon, A.F.G., Dewar, A.M. (1974). The time of determination of gynoparae and males in the bird cherry-oat aphid, Rhopalosiphum padi. Ann. Appl. Biol., 78, 1–6.
Durak, R., Węgrzyn, E., Leniowski, K. (2015). Do all aphids benefit from climate warming? An effect of temperature increase on a native species of temperate climatic zone Cinara juniperi Editorial. Ethol. Ecol. Evol., doi:10.1080/03949370.2015.1034785.
Hales, D.F., Wellings, P.W., Parkes, R.A. (1989). Investment in gynoparae and males by Myzus persicae (Sulzer). Funct. Ecol., 3, 727–734.
Halkett, F., Harrington, R., Hullé, M., Kindlmann, P., Menu, F., Rispe, C. (2004). Dynamic of production of sexual forms in aphids: theoretical and experimental evidence for adaptive “coin-flipping” plasticity. Am. Nat., 163, 112–125.
Hardie, J., Lees, A.D. (1985). The induction of normal and teratoid viviparae by a juvenile hormone and kinoprene in two species of aphids. Physiol. Entomol., 10, 65–74.
Hardie, J. (2010). Aphid polyphenism. Photoperiodism: the biological calendare. In: Photoperiodism in insect, Nelson, D.L., Denlinger, R.J, Somers, D.E. (eds). Oxford University Press, UK, 324–363.
Harrington, R., Bale, J.S., Tatchell, G.M. (1995). Aphids in a changing climate. In: Ed. Harrington R., Stork N.E. Insects in a changing environment. London Academic Press, UK, 125–155.
Harrington, R., Fleming, R., Woiwod, I. (2001). Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agricult. For. Entomol., 3, 233–240.
Hutcheson, K. (1970). A test for comparing diversities based on the Shannon formula. J. Theor. Biol., 29, 151–154.
Lamb, R.J., Pointin, P.J. (1972). Sexual morph determination in the aphid, Acyrthosiphon pisum. J. Insect Physiol., 18, 2029–2042.
Lees, A.D. (1966). The control of polymorphism in aphids. Adv. Insect Physiol., 3, 207–277.
Mackoś-Iwaszko, E., Lubiarz, M., Karczmarz, K. (2015). The impact of urban conditions on the occurrence of aphids on Acer platanoides L. Acta Sci. Pol. Hortorum Cultus, 14(5), 189–207.
Matsuka, M., Mittler, T.E. (1979). Production of males and gynoparae by apterous viviparae of Myzus persicae continuously exposed to different scotoperiods. J. Insect Physiol., 25, 587–593.
Menéndez, R. (2007). How are insects responding to global warming? Tijdschr. Voor Entomol., 150, 355–365.
Pielou, E.C. (1966). Shannon’s formula as a measure of specific diversity: its use and misuse. Am. Nat., 100, 463–465.
Ruszkowska, M. (2007). Across the transformation life cycle of Rhopalosiphum padi (L.) (Homoptera: Aphidoidea): coevolution with temperature. Rozpr. Nauk. Inst. Ochr. Rośl./Inst. Plant Prot., Poznań, Poland.
Ruszkowska, M., Strażyński, P. (2011). Elements of changes in the bionomy of aphids on trees in the urbanized environmental. Zesz. Probl. Post. Nauk Roln., 562, 221–227.
Shannon, C.E., Weaver, W. (1964). The mathematical Theory of Communication. The University of Illinois Press, Urbana, Illinois.
Simpson, E.H. (1949). Measurement of diversity. Nature, 163, 688.
Smith, M.A.H., MacKay, P.A. (1990). Latitudinal variation in the photoperiodic responses of populations of pea aphid (Homoptera: Aphididae). Environ. Entomol., 19, 618–624.
Smith, M.A.H., MacKay, P.A., Lamb, R.J. (2011). Temperature modulation of photoperiodism and the timing of late-season changes in life history for an aphid, Acythosiphon pisum. Can. Entomol., 143, 56–71.
Smith, M.A.H., MacKay, P.A., Lamb, R.J. (2013). Temperature modulation of photoperiodism: an adaptation for long-distance dispersal in the aphid, Acyrthosiphon pisum (Hemiptera: Aphididae). Can. Entomol, 145, 302–313.
Taylor, M.S., Harrington, R., Clark, S.J. (1998). Unseasonal male aphids. In: Aphids in natural and managed ecosystems, Nieto Nafria, J.M., Dixon, A.G. (eds.). Universidad De Leon, Espana, 287–295.
Taylor, L.R., Robert, Y. (1984). A Handbook for aphid identification. Rothamsted Experimental Station, Harpenden, UK.
Ward, S.A., Leather, S.R., Dixon, A.F.G. (1984). Temperature prediction and the timing of sex in aphids. Oecologia, 62, 230–233.
Wilkaniec, B. (2003). Male aphids caught in midfield thickets. Aphids and Other Hemipterous Insects, 9, 181–188.
Wilkaniec, B., 2005. Many years’ dynamics of aphid recurrence in urban green spaces of Poznań. Aphids and Other Hemipterous Insects, 11, 203–212.
Wilkaniec, B., Ratajczak, J., Sztukowska, K. (2007). Aphid males in urban green space. Aphids and Other Hemipterous Insects, 13, 83–90.
Wilkaniec, B., Wilkaniec, A. (2013). The biology and ecology of Brachycaudus divaricatae Shaposhnikov (Hemiptera, Aphidoidea) on Prunus cerasifera in Western Poland. J. Plant Prot. Res., 53, 42–47.
Williams R.S., Lincoln D.E., Norby R.J. (2003). Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 and temperature. Oceologia, 137, 114–122.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.