Skip to main navigation menu Skip to main content Skip to site footer

Vol. 19 No. 6 (2020)

Articles

PLANT MORPHOLOGY, VEGETATIVE BIOMASS COMPOSITION AND ENERGY CONTENT OF THREE DIFFERENT Silybum marianum ACCESSIONS

DOI: https://doi.org/10.24326/asphc.2020.6.6
Submitted: April 11, 2019
Published: 2020-12-31

Abstract

Silybum marianum (L.) Gaertn. (milk thistle) is plant species that has been utilized principally for medicinal purposes for more than 2000 years. Recently it was proposed for biomass production in marginal environments, but vegetative biomass compositional analyses had not been available so far. The study of plant morphology and biomass composition was conducted on three different S. marianum accessions grown under open field conditions. The results indicate that plant morphological traits show major differences between accessions: this suggests that the available natural variability can be further utilized in order to develop improved S. marianum cultivars. Biomass compositional analysis shows that extractives, ash, lignin and cellulose content are comparable to other herbaceous bioenergy crops and that these traits display only limited variability in the studied accessions. Hemicellulose fraction is composed only by xylans and its content appears averagely lower in comparison to other herbaceous biomasses. Interestingly, in S. marianum biomass total nitrogen content is lower if compared to other herbaceous species. The possible involvement of this specific biomass trait in S. marianum nitrogen utilization efficiency has to be further investigated.

References

  1. Afshar, R.K., Chaichi, M.R., Alipour, A., Jovini, M.A., Dashtaki, M., Hashemi, M. (2015). Potential of milk thistle for biomass production in semiarid regions. Crop Sci., 55, 1295–1301. DOI: 10.2135/cropsci2014.10.0678
  2. Andrzejewska, J., Sadowska, K., Mielcarek, S. (2011). Effect of sowing date and rate on the yield and flavonolignan content of the fruits of milk thistle (Silybum marianum L. Gaertn.) grown on light soil in a moderate climate. Ind. Crop. Prod., 33, 462–468. DOI: 10.1016/j.indcrop.2010.10.027
  3. Andrzejewska, J., Martinelli, T., Sadowska, K. (2015). Silybum marianum: non-medical exploitation of the species. Ann. Appl. Biol., 167, 285–297. DOI: 10.1111/aab.12232
  4. Domínguez, M.T., Montiel-Rozas, M.M., Madejon, P., Diaz, M.J., Madejon, E. (2017a). The potential of native species as bioenergy crops on trace-element contaminated Mediterranean lands. Sci. Total Environ., 590–591, 29–39. DOI: 10.1016/j.scitotenv.2017.03.018
  5. Domínguez, M.T., Madejon, P., Madejon, E., Bianco, M.J.D. (2017b). Novel energy crops for Mediterranean contaminated lands: valorization of Districhia viscosa and Silybum marianum biomass by pyrolysis. Chemosphere, 186, 968–976. DOI: 10.1016/j.chemosphere.2017.08.063
  6. Estaji, A., Souri, M.K., Omidbaigi, R. (2011). Evaluation of different levels of nitrogen and flower pruning on milk thistle (Silybum marianum L.) yield and fatty acids. Z. Arznei-Gewurzpfla, 16, 170–175.
  7. Estaji, A., Souri, M.K., Omidbaigi, R. (2016). Evaluation of Nitrogen and Flower Pruning Effects on Growth, Seed Yield and Active Substances of Milk Thistle. J. Essent. Oil-Bear. Plants, 19, 678–685. DOI: 10.1080/0972060X.2014.981592
  8. Gominho, J., Curt, M.D., Lourenço, A., Fernández, J., Pereira, H. (2018). Cynara cardunculus L. as a biomass and multi-purpose crop: a review of 30 years of research. Biomass Bioenerg., 109, 257–275. DOI: 10.1016/j.biombioe.2018.01.001
  9. Ibáñez, A.B., Bauer, S. (2014). Downscaled method using glass microfiber filters for the determination of Klason lignin and structural carbohydrates. Biomass Bioenerg., 68, 75–81. DOI: 10.1016/j.biombioe.2014.06.013
  10. ISMEA report (2013). “Piante officinali in Italia: un’istantanea della filiera e dei rapporti tra i diversi attori”. Available: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/6678 [date of access: 25.11.2020].
  11. Jakubowski, A.R., Jackson, R.D., Casler, M.D. (2017). Can biomass yield of switchgrass be increased without increasing nitrogen requirements? Crop Sci., 57, 2024–2031. DOI: 10.2135/cropsci2017.03.0193
  12. Kalamaras, S.D., Kotsopoulos, T.A. (2014). Anaerobic co-digestion of cattle manure and alternative crops for the substitution of maize in South Europe. Bioresour. Technol., 172, 68–75. DOI: 10.1016/j.biortech.2014.09.005
  13. Kuchelmeister, C., Bauer, S. (2015). Rapid Small-Scale Determination of Extractives in Biomass. Bioenerg. Res., 8, 68–76. DOI: 10.1007/s12155-014-9493-x
  14. Ledda, L., Deligios, P., Farci, R., Sulas, L. (2013). Biomass supply for energetic purposes from some Carduae species grown in a Mediterranean rainfed low input cropping system. Ind. Crop. Prod., 47, 218–226. DOI: 10.1016/j.indcrop.2013.03.013
  15. Martinelli, T., Andrzejewska, J., Salis, M., Sulas, L. (2015). Phenological growth stages of Silybum marianum according to the extended BBCH scale. Ann Appl. Biol., 166, 53–66. DOI: 10.1111/aab.12163
  16. Martinelli, T., Potenza, E., Moschella, A., Zaccheria, F., Benedettelli, S., Andrzejewska, J. (2016). Phenotypic evaluation of a milk thistle germplasm collection: fruit morphology and chemical composition. Crop Sci., 56, 3160–3172. DOI: 10.2135/cropsci2016.03.0162
  17. Martinelli, T. (2019). Identification of milk thistle shatter resistant mutant lines with altered lignocellulosic profile for the complete domestication of the species. Crop Sci., 59, 2119–2127. DOI: 10.2135/cropsci2019.02.0103
  18. Merrill, A.L., Watt, B.K. (1973). Energy Value of Foods: Basis and Derivation. In: Agriculture Handbook No. 74. ARS United States Department of Agriculture, Washington DC.
  19. Morazzoni, P., Bombardelli, E. (1995). Silybum marianum (Carduus marianus). Fitoterapia, 66, 3–42.
  20. Ram, G., Bhan, M.K., Gupta, K.K., Thaker, B., Jamwal, U., Pal, S. (2005). Variability pattern and correlation studies in Silybum marianum Gaertn. Fitoterapia, 76, 143–147. DOI: 10.1016/j.fitote.2004.10.006
  21. Shokrpour, M., Gigloo, M.T., Asghari, A., Bahrampour, S. (2011). Study of some agronomic attributes in milk thistle (Silybum marianum Gaertn.) ecotypes from Iran. J. Med. Plant. Res., 5, 2169–2174.
  22. Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., Templeton, D.W. (2010). Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods. J. Agric. Food Chem., 58, 9043–9053. DOI: 10.1021/jf1008023
  23. Smith, T., Kawa, K., Eckl, V., Johnson, J. (2016). Sales of Herbal Dietary Supplements in US Increased 7.5% in 2015 Consumers spent $6.92 billion on herbal supplements in 2015, marking the 12th consecutive year of growth. HerbalGram, 111, 67–73.
  24. Somerville, C., Youngs, H., Taylor, C., Davis, S.C., Long, S.P. (2010). Feedstocks for lignocellulosic biofuels. Science, 329, 790–792. DOI: 10.1126/science.1189268
  25. Sorek, N., Yeats, T.H., Szemenyei, H., Youngs, H., Somerville, C.R. (2014). The implications of lignocellulosic biomass chemical composition for the production of advanced biofuels. BioScience, 64, 192–201. DOI: 10.1093/biosci/bit037
  26. Sulas, L., Murgia, L., Ventura, A. (2008) Phytomass production from Silybum marianum for bioenergy. Opt. Méd., 79, 487–490.
  27. Toscano, G., Foppa Pedretti, E. (2009). Calorific value determination of solid biomass fuel by simplified method. J. Agric. Eng., 40, 1–6. DOI: 10.4081/jae.2009.3.1
  28. Wathelet, J.P., Iori, R., Leoni, O., Quinsac, A., Palmieri, S. (2004). Guidelines for glucosinolate analysis in green tissues used for biofumigation. Agroindustria, 3, 257–266.
  29. Williams, C.L., Emerson, R.M., Tumuluru J.S. (2017). Biomass compositional analysis for conversion to renewable fuels and chemicals. In: Biomass volume estimation and valorisation for energy, Tumuluru, J.S. (ed.). InTechOpen, London. DOI: 10.5772/65777

Downloads

Download data is not yet available.

Similar Articles

<< < 17 18 19 20 21 22 23 24 25 26 > >> 

You may also start an advanced similarity search for this article.