Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 5 (2022)

Articles

Assessment of total phenolic, total flavonoid, metal contents and antioxidant activities of Trametes versicolor and Laetiporus sulphureus

DOI: https://doi.org/10.24326/asphc.2022.5.4
Submitted: October 22, 2021
Published: 2022-10-28

Abstract

Antioxidant activities, metal contents, total phenolics and flavonoids were analyzed for Trametes versicolor and Laetiporus sulphureus collected from Kastamonu region by using ICP-OES and spectrophotometric methods. Antioxidant activity of mushroom extracts were expressed as percentage of DPPH radicals inhibition and IC50 values. Percentage of inhibition ranged from 15.83 to 61.03% and IC50 value was found 5.33 mg/mL for L. sulphureus and % inhibition ranged from 7.27 to 20.47% and IC50 value was found 18.10 mg/mL for T. versicolor. The content of phenols in methanolic extracts expressed in gallic acid equivalents varied between 77.41±1.10 and 272,70±2.26 mg/g for T. versicolor and L. sulphureus respectively. Also the content of flavonoids in methanolic extracts expressed in quercetin equivalents varied between 13.82±0.21 and 44.29±0.54 mg/mg for T. versicolor and L. sulphureus, respectively. As a result the significant linear correlation was corroborated between the values for the total phenolic content and antioxidant activity of this mushroom. In addition, all samples were analyzed by ICP-OES to obtain the concentration of Co, Cu, Cd, Pb, Ni, Cr, Na, Ca, Al, Fe, Zn, Ba, P, Mg, As, Mn and B. While maximum and minimum metal contents of mushrooms were found as mg/kg for Na (1.88-2.09), Mg (4.59-6.77), P (17.11-24.52), Ca (0.49-23.91) and Fe (0.49-3.84), the maximum and minimum trace metal contents of mushrooms were found as µg/kg for Cr (8.23-35.27), Ni (41.51-180.99), Cu (36.36-123.93).

References

  1. Akgul, H., Sevindik, M., Coban, C., Alli, H., Selamoglu, Z. (2017). New approaches in traditional and complementary alternative medicine practices: Auricularia auricula and Trametes versicolor. J. Tradit. Med. Clin. Natur., 6(4), 239. DOI: https://doi.org/10.4172/2573-4555.1000239
  2. Arvouet-Grand, A., Vennat, B., Pourrat, A., Leglet, P. (1994). Standardization of propolis extract and identification of principal constituents. J. Pharm. Belg., 49(6), 462–468. https://doi.org/10.1186/1475-2891-8-33 DOI: https://doi.org/10.1186/1475-2891-8-33
  3. Ayaz, F.A., Torun, H., Özel, A., Çöl, M., Duran, C., Sesli, E., Çolak, A. (2011). Nutritional value of some wild edible mushrooms from the Black Sea Region (Turkey). Turk. J. Biochem., 36(4), 385–393. https://doi.org/10.5072/ZENODO.30994
  4. Bakır, T., Ünal, S., Karadeniz, M., Bakır, A.S. (2017). A comparative study on antioxidant properties and metal contents of some edible mushroom samples from Kastamonu, Turkey. J. Food Health Sci, 3(4), 132–140. https://doi.org/10.3153/JFHS17016. DOI: https://doi.org/10.3153/JFHS17016
  5. Bakır, T., Boufars, M., Karadeniz, M., Ünal, S. (2018a). Amino acid composition and antioxidant properties of five edible mushroom species from Kastamonu, Turkey. Afr. J. Tradit. Complement. Altern. Med., 15(2), 80–87. https://doi.org/10.21010/ajtcam.v15i2.10 DOI: https://doi.org/10.21010/ajtcamv15i2.10
  6. Bakır, T., Karadeniz, M., Ünal, S. (2018b). Investigation of antioxidant activities of Pleurotus ostreatus stored at different temperatures. Food Sci. Nutr., 6(4), 1040–1044. https://doi.org/10.1002/fsn3.644 DOI: https://doi.org/10.1002/fsn3.644
  7. Bozdoğan, A., Ulukanlı, Z., Bozok, F., Eker, T., Doğan, H.H., Büyükalaca, S. (2018). Antioxidant potential of Lactarius deliciosus and Pleurotus ostreatus from Amanos Mountains. Adv. Life Sci., 5(3), 113–120.
  8. Bulam, S., Üstün, N.Ş., Pekşen, A. (2018). The most popular edible wild mushrooms in Vezirköprü district of Samsun province. Turk. J. Agri.-Food Sci. Tech., 6(2), 189–194. https://doi.org/10.24925/turjaf.v6i2.189-194.1547 DOI: https://doi.org/10.24925/turjaf.v6i2.189-194.1547
  9. Bulam, S., Üstün, N.Ş., Pekşen, A. (2019a). Yenebilir doğa mantarlarının bazı fiziksel ve fizikokimyasal özellikleri ile mineral madde içeriklerinin belirlenmesi. [Determination of Some Physical and Physicochemical Properties and Mineral Contents of Edible Wild Mushrooms]. J. Fungus, 10(özel sayı), 193–203. https://doi.org/10.30708.mantar.638995
  10. Bulam, S., Üstün, N.Ş., Pekşen, A. (2019b). Nutraceutical and food preserving importance of Laetiporus sulphureus. Turk. J. Agri.-Food Sci. Tech., 7(suppl. 1), 94–100. https://doi.org/10.24925/turjaf.v7isp1.94-100.2729 DOI: https://doi.org/10.24925/turjaf.v7isp1.94-100.2729
  11. Bulam, S., Üstün, N.Ş., Pekşen, A. (2021). Effects of different processing methods on nutrients, bioactive compounds, and biological activities of Chanterelle mushroom (Cantharellus cibarius): a review. Eur. Food Sci. Eng., 2(2), 52–58.
  12. Chandler, S.F., Dodds, J.H. (1983). The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasodine in callus cultures of Solanum laciniatum. Plant Cell Rep., 2(4), 205–208. https://doi.org/10.1007/BF00270105 DOI: https://doi.org/10.1007/BF00270105
  13. Frankel, E.N., Meyer, A.S. (2000). The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric., 80(13), 1925–1941. https://doi.org/10.1002/1097-0010(200010)80:13<1925:AID-JSFA714>3.0.CO;2-4 DOI: https://doi.org/10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4
  14. Kalač, P. (2019). Mineral composition and radioactivity of edible mushrooms. Academic Press. https://doi.org/10.1016/C2018-0-02278-1 DOI: https://doi.org/10.1016/B978-0-12-817565-1.00005-4
  15. Karadeniz, M., Bakır, T., Ünal, S. (2019). Investigation of changes in antioxidant activity of some Pleurotus species by using composts including different metal salts. J. Indian Chem. Soc., 96(special issue), 1217–1220.
  16. Keskin, F., Sarikurkcu, C., Akata, I., Tepe, B. (2021). Element concentration, daily intake of elements, and health risk indices of wild mushrooms collected from Belgrad Forest and Ilgaz Mountain National Park (Turkey). Environ. Sci. Pollut. Res., 28, 51544–51555. https://doi.org/10.1007/s11356-021-14376-6 DOI: https://doi.org/10.1007/s11356-021-14376-6
  17. Klaus, A., Kozarski, M., Niksic, M., Jakovljevic, D., Todorovic, N., Stefanoska, I., Van Griensven, L. J. (2013). The edible mushroom Laetiporus sulphureus as potential source of natural antioxidants. Int. J. Food Sci. Nutr., 64(5), 599–610. https://doi.org/10.3109/09637486.2012.759190 DOI: https://doi.org/10.3109/09637486.2012.759190
  18. Kozarski, M., Klaus, A., Nikšić, M., Vrvić, M.M., Todorović, N., Jakovljević, D.V., Griensven, L.J. (2012). Antioxidative activities and chemical characterization of polysaccharide extracts from the widely used mushrooms Ganoderma applanatum, Ganoderma lucidum, Lentinus edodes and Trametes versicolor. J. Food Compost. Anal., 26, 144–153. https://doi.org/10.1016/J.JFCA.2012.02.004 DOI: https://doi.org/10.1016/j.jfca.2012.02.004
  19. Lee, D.H., Kim, J.H., Park, J.S., Choi, Y.J., Lee, J.S. (2004). Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum. Peptides, 25(4), 621–627. https://doi.org/10.1016/j.peptides.2004.01.015 DOI: https://doi.org/10.1016/j.peptides.2004.01.015
  20. Mukherjee, S., Pawar, N., Kulkarni, O., Nagarkar, B., Thopte, S., Bhujbal, A., Pawar, P. (2011). Evaluation of free-radical quenching properties of standard Ayurvedic formulation Vayasthapana Rasayana. BMC Complement. Altern. Med., 11, 38. https://doi.org/10.1186/1472-6882-11-38 DOI: https://doi.org/10.1186/1472-6882-11-38
  21. Olennikov, D.N., Tankhaeva, L.M., Agafonova, S.V. (2011). Antioxidant components of Laetiporus sulphureus (Bull.: Fr.) Murr. fruit bodies. Appl. Biochem. Microbiol., 47(4), 419–425. https://doi.org/10.1134/S0003683811040107 DOI: https://doi.org/10.1134/S0003683811040107
  22. Orhan, I., Üstün, O. (2011). Determination of total phenol content, antioxidant activity and acetylcholinesterase inhibition in selected mushrooms from Turkey. J. Food Compost. Anal., 24(3), 386–390. https://doi.org/10.1016/j.jfca.2010.11.005 DOI: https://doi.org/10.1016/j.jfca.2010.11.005
  23. Petrović, J., Papandreou, M., Glamočlija, J., Ćirić, A., Baskakis, C., Proestos, C., Lamari, F., Zoumpoulakis, P., Soković, M. (2014). Different extraction methodologies and their influence on the bioactivity of the wild edible mushroom Laetiporus sulphureus (Bull.) Murrill. Food Funct., 5(11), 2948–2960. https://doi.org/10.1039/c4fo00727a DOI: https://doi.org/10.1039/C4FO00727A
  24. Phillips, R., Reid, D.A., 2006. Mushrooms. Pan Macmillan, London.
  25. Pop, R.M., Puia, I.C., Puia, A., Chedea, V.S., Leopold, N., Bocsan, I.C., Buzoianu, A.D. (2018). Characterization of Trametes versicolor: medicinal mushroom with important health benefits. Not. Bot. Horti. Agrobot. Cluj Napoca, 46(2), 343–349. https://doi.org/10.15835/nbha46211132 DOI: https://doi.org/10.15835/nbha46211132
  26. Rašeta, M., Popović, M., Knežević, P., Šibul, F., Kaišarević, S., Karaman, M. (2020). Bioactive phenolic compounds of two medicinal mushroom species Trametes versicolor and Stereum subtomentosum as antioxidant and antiproliferative agents. Chem. Biodivers., 17, e2000683. https://doi.org/10.1002/cbdv.202000683 DOI: https://doi.org/10.1002/cbdv.202000683
  27. Sevindik, M., Akgul, H., Dogan, M., Akata, I., Selamoglu, Z. (2018). Determination of antioxidant, antimicrobial, DNA protective activity and heavy metals content of Laetiporus sulphureus. Fresenius Environ. Bull., 27(3), 1946–1952.
  28. Slinkard, K., Singleton, V.L. (1977). Total phenol analysis: automation and comparison with manual methods. Am. J. Enol. Vitic., 28(1), 49–55. DOI: https://doi.org/10.5344/ajev.1974.28.1.49
  29. Stojanova, M., Pantić, M., Karadelev, M., Čuleva, B., Nikšić, M. (2021). Antioxidant potential of extracts of three mushroom species collected from the Republic of North Macedonia. J. Food Process. Preserv., 45, e15155. https://doi.org/10.1111/jfpp.15155 DOI: https://doi.org/10.1111/jfpp.15155
  30. Sułkowska-Ziaja, K., Muszynska, B., Motyl, P., Pasko, P., Ekiert, H. (2012). Phenolic compounds and antioxidant activity in some species of polyporoid mushrooms from Poland. Int. J. Med. Mushrooms, 14(4), 385–393. https://doi.org/10.1615/IntJMedMushr.v14.i4.60 DOI: https://doi.org/10.1615/IntJMedMushr.v14.i4.60
  31. Şihoğlu Tepe, A. (2021). Chemical compositions and antioxidant activities of four different mushroom species collected from Turkey. Int. J. Second. Metab., 8(3), 214–226. https://doi.org/10.21448/ijsm.953923 DOI: https://doi.org/10.21448/ijsm.953923
  32. Turfan, N., Pekşen, A., Kibar, B., Ünal, S. (2018). Determination of nutritional and bioactive properties in some selected wild growing and cultivated mushrooms from Turkey. Acta Sci. Pol. Hortorum Cultus, 17(3), 57–72. https://doi.org/10.24326/asphc.2018.3.6 DOI: https://doi.org/10.24326/asphc.2018.3.6
  33. Turkoğlu, A., Duru, M.E., Mercan, N., Kivrak, I., Gezer, K. (2007). Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem., 101(1), 267–273. https://doi.org/10.1016/j.foodchem.2006.01.025 DOI: https://doi.org/10.1016/j.foodchem.2006.01.025
  34. Yamaç, M., Yıldız, D., Sarıkürkcü, C., Celikkollu, M., Solak, M.H. (2007). Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chem., 103(2), 263–267. https://doi.org/10.1016/j.foodchem.2006.07.041 DOI: https://doi.org/10.1016/j.foodchem.2006.07.041

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.