Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 6 (2022)

Articles

Determination of the effects of PGPR isolates and algae on plant growth in broad bean (Vicia faba L.) grown under water stress conditions

DOI: https://doi.org/10.24326/asphc.2022.6.9c
Submitted: February 4, 2022
Published: 2022-12-30

Abstract

In regions exposed to drought stress, the use of bacteria applications to promote yield and quality has increased. This study was carried out to determine the effects of rhizobacteria and algae treatments on some biochemical and physiological properties of broad bean (Vicia faba L.) grown under water stress conditions. According to the completely randomized experimental design, the study was carried out in 4 replications in factorial order. In the experiment, the Filiz-99 broad bean variety was used as a plant material. In the study, 4 different biological applications (control, blue-green algae, and 2 different bacteria) and 3 different irrigation levels – 100% (NI), 50% (RI1), and 25% (RI2) – have been applied. In the study, properties such as root and stem length, stem and root fresh weight, stem, and root dry weight, nitrogen balance index, antioxidant, flavonoid, and phenolic properties were examined. Root length changed between 21.37–25.62 cm in bacteria and algae applications, and the highest value was obtained from the B1 application with 25.62 g. At increasing water stress levels, the nitrogen balance index varied in the range of 128.01–77.50%. In bacteria and algae applications, the highest value was obtained from the B1 application. While the phenolic content ranged between 127.53 and 134.31 mg GAE (Gallic Acid Equivalents) g–1 with increasing water stress, the highest value among biological applications was B1 application with 138.06 mg GAE g–1. As a result of the interaction of factors, the highest phenolic values were obtained from B1 × RI2 (149.85 mg GAE g–1), B2 × RI2 (137.05 mg GAE g–1), B0 × NI (127.43 mg GAE g–1), and B0 × RI2 (123.69 mg GAE g–1) applications, while the lowest values were obtained from B2 × NI (123.22 mg GAE g–1), Alg × RI2 (126.65 mg GAE g–1), Alg × NI (127.75 mg GAE g–1), and B1 × NI (131.73 mg GAE g–1) applications. In the study, it was determined that bacterial applications were more effective than algae applications.

References

  1. Abayomi, Y., Abidoye, T. (2009). Evaluation of cowpea genotypes for soil moisture stress tolerance under screen house conditions. Afr. J. Plant Sci., 3(10), 229–237.
  2. Anjum, S.A., Xie, X.-Y., Wang, L.-C., Saleem, M.F., Man, C., Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res., 6(9), 2026–2032.
  3. Ashraf, M., Iram, A. (2005). Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora, 200(6), 535–546. https://doi.org/10.1016/j.flora.2005.06.005 DOI: https://doi.org/10.1016/j.flora.2005.06.005
  4. Bat, M., Tunçtürk, R., Tunçtürk, M. (2019). Kuraklık Stresi Altındaki Ekinezya (Echinacea purpurea L.)’ da Deniz Yosununun Büyüme Parametreleri, Toplam Fenolik ve Antioksidan Madde Üzerine Etkisi [Effect of seaweed on growth parameters, total phenolic and antioxidant substance in echinacea (Echinacea purpurea L.) under drought stress]. Yuzuncu Yil Univ. J. Agric. Sci., 29(3), 496–505 [in Turkish]. https://doi.org/10.29133/yyutbd.532883 DOI: https://doi.org/10.29133/yyutbd.532883
  5. Bettaieb, I., Hamrouni-Sellami, I., Bourgou, S., Limam, F., Marzouk, B. (2011). Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Phys. Plant., 33(4), 1103–1111. http://dx.doi.org/10.1007/s11738-010-0638-z DOI: https://doi.org/10.1007/s11738-010-0638-z
  6. Büyük, İ., Soydam Aydın, S., Aras, S. (2012). Bitkilerin stres koşullarına verdiği moleküler cevaplar [Molecular responses of plants to stress conditions]. Turk. Hij. Den. Biyol. Derg., 69(2), 97–110 [in Turkish]. https://dx.doi.org/10.5505/TurkHijyen.2012.40316 DOI: https://doi.org/10.5505/TurkHijyen.2012.40316
  7. Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res., 112(2–3), 119–123. https://doi.org/10.1016/j.fcr.2009.03.009 DOI: https://doi.org/10.1016/j.fcr.2009.03.009
  8. Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P.P., Osório, M.L., Carvalho, I., Faria, T., Pinheiro, C. (2002). How plants cope with water stress in the field? Photosynthesis and growth. Ann. Bot., 89(7), 907–916. http://dx.doi.org/10.1093/aob/mcf105 DOI: https://doi.org/10.1093/aob/mcf105
  9. Cubero, J.I. (1973). Evolutionary trends in Vicia faba L. Theoret. Appl. Genet., 43(2), 59–65. https://doi.org/10.1007/bf00274958 DOI: https://doi.org/10.1007/BF00274958
  10. Cubero, J.I. (1974). On the evolution of Vicia faba L. Theoret. Appl. Genet., 45(2), 47–51. https://doi.org/10.1007/bf00283475 DOI: https://doi.org/10.1007/BF00283475
  11. Chen, D., Wang, S., Xiong, B., Cao, B., Deng, X. (2015). Carbon/nitrogen imbalance associated with drought-induced leaf senescence in Sorghum bicolor. PloS One, 10(8), e0137026. https://doi.org/10.1371/journal.pone.0137026 DOI: https://doi.org/10.1371/journal.pone.0137026
  12. Çakmakçı, R., Turan, M., Güllüce, M., Sahin, F. (2014). Rhizobacteria for reduced fertilizer inputs in wheat (Triticum aestivum spp. vulgare) and barley (Hordeum vulgare) on aridisols in Turkey. Int. J. Plant Prod., 8(2), 163–181.
  13. Çirka, M., Kaya, A.R., Eryiğit, T. (2021). Influence of temperature and salinity stress on seed germination and seedling growth of soybean (Glycine max L.). Leg. Res., 44(9), 1053–1059. https://doi.org/10.18805/LR-628 DOI: https://doi.org/10.18805/LR-628
  14. Coşkan, A., Şenyığıt, U. (2018). Farklı Sulama Suyu Düzeyi ve Vermikompost Dozlarının Marul Bitkisinin Mikro Element Alımına Etkileri [Effects of different irrigation water levels and vermicompost doses on micro nutrient uptake of lettuce plant]. Suleyman Demirel University, 1st International Agricultural Structures and Irrigation Congress Special Issue, 348–356 [in Turkish].
  15. Dal Cortivo, C., Barion, G., Visioli, G., Mattarozzi, M., Mosca, G., Vamerali, T. (2017). Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: assessment of plant-microbe interactions by ESEM. Agric. Ecosys. Environ., 247, 396–408. https://doi.org/10.1016/j.agee.2017.07.006 DOI: https://doi.org/10.1016/j.agee.2017.07.006
  16. Djordjevic, M.A., Gabriel, D.W., Rolfe, B.G. (1987). Rhizobium – the refined parasite of legumes. Ann. Rev. Phytopathol., 25(1), 145–168. https://doi.org/10.1146/annurev.py.25.090187.001045 DOI: https://doi.org/10.1146/annurev.py.25.090187.001045
  17. FAO, (2020). http://www.fao.org/faostat/en/#data/QCL/visualize [date of access: 15.12.2021].
  18. Ferreira, M., Fernandes, M., Döbereiner, J. (1987). Role of Azospirillum brasilense nitrate reductase in nitrate assimilation by wheat plants. Biol. Fertil. Soil., 4(1), 47–53. DOI: https://doi.org/10.1007/BF00280350
  19. Glick, B.R. (1995). The enhancement of plant growth by free-living bacteria. Canad. J. Microbiol., 41(2), 109–117. https://doi.org/10.1139/m95-015 DOI: https://doi.org/10.1139/m95-015
  20. Gururani, M.A., Upadhyaya, C.P., Strasser, R.J., Yu, J.W., Park, S.W. (2013). Evaluation of abiotic stress tolerance in transgenic potato plants with reduced expression of PSII manganese stabilizing protein. Plant Sci., 198, 7–16. https://doi.org/10.1016/j.plantsci.2012.09.014 DOI: https://doi.org/10.1016/j.plantsci.2012.09.014
  21. Hanson, P., Yang, R.-Y., Chang, L.-C., Ledesma, L., Ledesma, D. (2011). Carotenoids, ascorbic acid, minerals, and total glucosinolates in choysum (Brassica rapa cvg. parachinensis) and kailaan (B. oleraceae Alboglabra group) as affected by variety and wet and dry season production. J. Food Compos. Anal., 24(7), 950–962. http://dx.doi.org/10.1016/j.jfca.2011.02.001 DOI: https://doi.org/10.1016/j.jfca.2011.02.001
  22. Heimler, D., Vignolini, P., Dini, M.G., Romani, A. (2005). Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. dry beans. J. Agric. Food Chem., 53(8), 3053–3056. https://doi.org/10.1021/jf049001r DOI: https://doi.org/10.1021/jf049001r
  23. Heidari, M., Golpayegani, A. (2012). Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J. Saudi Soc. Agric. Sci., 11(1), 57–61. https://doi.org/10.1016/j.jssas.2011.09.001 DOI: https://doi.org/10.1016/j.jssas.2011.09.001
  24. Ibrahim, M.H., Jaafar, H.Z.E. (2011). Photosynthetic capacity photochemical efficiency and chlorophyll content of three varieties of Labisia pumila Benth. exposed to open field and greenhouse growing conditions. Acta Physiol. Plant., 33(6), 2179–2185. https://doi.org/10.1007/s11738-011-0757-1 DOI: https://doi.org/10.1007/s11738-011-0757-1
  25. Karagöz, H., Çakmakçı, R., Hosseinpour, A., Kodaz, S. (2018). Alleviation of water stress and promotion of the growth of sugar beet (Beta vulgaris L.) plants by multi-traits rhizobacteria. Appl. Ecol. Environ. Res., 16(5), 6801–6813.
  26. Kaya, A.R.; Eryiğit, T. (2021). Lead nitrate (Pb (NO3) 2) impact on seed germination and seedling growth of different soybean (Glycine max L.) varieties. Pakistan J. Bot., 53(5), 1617–1627. http://dx.doi.org/10.30848/PJB2021-5(12) DOI: https://doi.org/10.30848/PJB2021-5(12)
  27. Kumlay, A., Eryiğit, T. (2011). Growth and development regulators in plants: plant hormones. Iğdır Univ. J. Inst. Sci. Tech., 1(2), 47–56.
  28. Kloepper, J.W., Leong, J., Teintze, M., Schroth, M.N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286(5776), 885–886. https://doi.org/10.1038/286885a0 DOI: https://doi.org/10.1038/286885a0
  29. Lutz, M., Henríquez, C., Escobar, M. (2011). Chemical composition and antioxidant properties of mature and baby artichokes (Cynara scolymus L.), raw and cooked. J. Food Compos. Anal., 24(1), 49–54. https://doi.org/10.1016/j.jfca.2010.06.001 DOI: https://doi.org/10.1016/j.jfca.2010.06.001
  30. Munemasa, S., Hauser, F., Park, J., Waadt, R., Brandt, B., Schroeder, J.I. (2015). Mechanisms of abscisic acid-mediated control of stomatal aperture. Curr. Opin. Plant Biol., 28, 154–162. https://doi.org/10.1016/j.pbi.2015.10.010 DOI: https://doi.org/10.1016/j.pbi.2015.10.010
  31. Nachi, N., Le Guen, J. (1996). Dry matter accumulation and seed yield in faba bean (Vicia faba L) genotypes. Agronomie, 16(1), 47–59. Nachi, N.; Le Guen, J. (1996). Dry matter accumulation and seed yield in faba bean (Vicia faba L) genotypes. Agronomie, 16(1), 47–59. https://doi.org/10.1051/agro:19960103
  32. Nadeem, S.M., Ahmad, M., Zahir, Z.A., Javaid, A., Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv., 32(2), 429–448. https://doi.org/10.1016/j.biotechadv.2013.12.005 DOI: https://doi.org/10.1016/j.biotechadv.2013.12.005
  33. Oral, E., Tunçtürk, R., Tunçtürk, M. (2021). The effect of rhizobacteria in the reducing drought stress in soybean (Glycine max L.). Leg. Res., 44(10), 1172–1178. https://doi.org/10.18805/LR-631 DOI: https://doi.org/10.18805/LR-631
  34. Osakabe, Y., Osakabe, K., Shinozaki, K., Tran, L.-S.P. (2014). Response of plants to water stress. Front. Plant Sci., 5, 86. https://doi.org/10.3389/fpls.2014.00086 DOI: https://doi.org/10.3389/fpls.2014.00086
  35. Pessarakli, M., Haghighi, M., Sheibanirad, A. (2015). Plant responses under environmental stress conditions. Adv. Plants Agric. Res., 2(6), 776–286. https://doi.org/10.15406/apar.2015.02.00073 DOI: https://doi.org/10.15406/apar.2015.02.00073
  36. Rietjens, I.M.C.M., Boersma, M.G., Haan, L.D., Spenkelink, B., Awad, H.M., Cnubben, N.H.P., van Zanden, J.J., Woude, H.V.D., Alink, G.M., Koeman, J.H. (2002). The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ. Toxicol. Pharmacol., 11(3), 321–333. https://doi.org/10.1016/S1382-6689(02)00003-0 DOI: https://doi.org/10.1016/S1382-6689(02)00003-0
  37. Sarma, R.K., Saikia, R. (2014). Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil, 377(1–2), 111–126. DOI: https://doi.org/10.1007/s11104-013-1981-9
  38. Saxena, M. (1991). Status and scope for production of faba bean in the Mediterranean countries. Options Méditer., 10(1), 5–20.
  39. Sharma, K. (2021). Impact of different rhizobial strains on physiological responses and seed yield of mungbean [Vigna radiata (L.) Wilczek] under field conditions. Leg. Res., 44(6), 679–683. https://doi.org/10.15505/LR-4339
  40. Shakir, L., Ejaz, S., Ashraf, M., Qureshi, N.A., Anjum, A.A., Iltaf, I., Javeed, A. (2012). Ecotoxicological risks associated with tannery effluent wastewater. Environ. Toxicol. Pharmacol., 34(2), 180–191. https://doi.org/10.1016/j.etap.2012.03.002 DOI: https://doi.org/10.1016/j.etap.2012.03.002
  41. Şelem, E., Nohutçu, L., Tunçtürk, R., Tunçtürk, M. (2021). The effect of plant growth promoting rhizobacteria applications on some growth parameters and physiological properties of marigold (Calendula officinalis L.) plant grown under drought stress conditions. Yuzuncu Yıl Univ. J. Agric. Sci., 31(4), 886–897. http://doi.org/10.29133/yyutbd.922874 DOI: https://doi.org/10.29133/yyutbd.922874
  42. Telek, Ü., Akıncı, İ.E., Küsek, M. (2019). The effect of rhizobacteria strains on yield and plant characteristics of red hot pepper (Capsicum annuum L.). KSU J. Agric. Nat., 22(1), 62–70. https://doi.org/10.18016/ksutarimdoga.vi.448536 DOI: https://doi.org/10.18016/ksutarimdoga.vi.448536
  43. Tüfenkçi, Ş., Demir, S., Şensoy, S., Ünsal, H., Durak, E.D., Erdinç, C.; Biçer, Ş.; Ekincialp, A. (2012). The effects of arbuscular mycorrhizal fungi on the seedling growth of four hybrid cucumber (Cucumis sativus L.) cultivars. Turkish J. Agric. Forest., 36(3), 317–327. https://doi.org/10.3906/tar-1012-1608 DOI: https://doi.org/10.3906/tar-1012-1608
  44. Yildirim, E., Caşka Kiliçaslan, S., Ekinci, M., Kul, R. (2020). Kuraklık Stresinin Fasulyede Bitki Gelişimi, Bazı Fizyolojik ve Biyokimyasal Özellikler Üzerine Etkisi [The effect of drought stress on plant growth, some physiological and biochemical properties of bean]. Erciyes Univ. J. Institue Sci. Tech., 36(2), 264–273 [in Turkish].

Downloads

Download data is not yet available.

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.