Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 2 (2023)

Articles

Comparative analysis of the biotechnological potential of Knautia drymeia Heuff. and K. macedonica Griseb

DOI: https://doi.org/10.24326/asphc.2023.4913
Submitted: September 11, 2022
Published: 2023-04-28

Abstract

The present study of Knautia drymeia and K. macedonica is in line with the current trend of searching for new plant species that can potentially be used as medicinal herb materials. A comparative analysis of the morphological and anatomical structure of both species was performed together with the distribution of polyphenolic compounds, which was correlated with the tissue structure of plant organs. Quantitative phytochemical analyses were performed to supplement the biophysical analyses. Both species had a similar morphological, anatomical, and histological structure. Polyphenolic compounds were accumulated in the parenchyma tissue in an organ-specific mode, mainly in the leaves. The phytochemical analyses revealed organ- and species-dependent variations in the polyphenol content. Thus, the highest polyphenol amount was observed in the leaves, with equal levels of total polyphenols and phenolic acids in the leaves of K. macedonica and K. drymeia, respectively. The present study integrates morphological/histological analyses with investigations of the biotechnological/pharmaceutical potential of the studied plants and constitutes an innovative and holistic approach to the current research problem.

References

  1. Allen, D.E., Hatfield, G. (2004). Medicinal plants in folk tradition. Timber Press, Portland.
  2. Balasundram, N., Sundram, K., Samman, S. (2002). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem., 99(1), 191–203. https://doi.org/10.1016/j.foodchem.2005.07.042 DOI: https://doi.org/10.1016/j.foodchem.2005.07.042
  3. Chrząszcz, M., Miazga-Karska, M., Klimek, K., Granica, S., Tchórzewska, D., Ginalska, G., Szewczyk, K. (2020). Extracts from Cephalaria uralensis (Murray) Roem. & Schult. and Cephalaria gigantea (Ledeb.) Bobrov as potential agents for treatment of seborrheic skin diseases: Chemical characterization and in vitro biological evaluation. Antioxidants, 9(9), 796. https://doi.org/10.3390/antiox9090796 DOI: https://doi.org/10.3390/antiox9090796
  4. Chrząszcz, M., Szewczyk, K., Tchórzewska, D. (2021). Biotechnological potential of Cephalaria uralensis (Murray) Roem. & Schult. and C. gigantea (Ledeb.) Bobrov – comparative analysis of plant anatomy and the content of biologically active substances. Plants, 10(5), 986. https://doi.org/10.3390/plants10050986 DOI: https://doi.org/10.3390/plants10050986
  5. Dmitruk, M., Sulborska, A., Żuraw, B., Stawiarz, E., Weryszko Chmielewska, E. (2019). Sites of secretion of bioactive compounds in leaves of Dracocephalum moldavica L.: anatomical, histochemical, and essential oil study. Rev. Bras. Bot., 42, 701–715. https://doi.org/10.1007/s40415-019-00559-6 DOI: https://doi.org/10.1007/s40415-019-00559-6
  6. Ehrendorfer, F. (1976). Knautia L. In: Tutin, T.G. (ed.). Flora Europaea. Vol. 4. Plantaginaceae to Compositae (and Rubiaceae). Cambridge University Press, Cambridge.
  7. Fraisse, D., Carnat, A., Viala, D., Pradel, P., Besle, J.M., Coulon, J.B., Felgines, C., Lamaison, J.L. (2007). Polyphenolic composition of a permanent pasture: variations related to the period of harvesting. J. Sci. Food Agric., 87, 2427–2435. DOI: https://doi.org/10.1002/jsfa.2918
  8. Hayat, M.A. (1981). Principles and techniques of electron microscopy. Biological applications. Edward Arnold, London.
  9. Hoffmann, E.M., Selje-Assmann, N., Becker, K. (2008). Dose studies on anti-proteolytic effects of a methanol extract from Knautia arvensis on in vitro ruminal fermentation. Anim. Feed Sci. Technol., 145(1–4), 285–301. https://doi.org/10.1016/j.anifeedsci.2007.06.038 DOI: https://doi.org/10.1016/j.anifeedsci.2007.06.038
  10. Hutzler, P., Fischbach, R., Heller, W., Jungblut, T.P., Reuber, S., Schmitz, R., Veit, M., Weissenbök, G., Schnitzler J.P. (1998). Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. J. Exp. Bot., 323, 953–965. DOI: https://doi.org/10.1093/jxb/49.323.953
  11. Inoue, M., Hayashi, S. (2021). Blessings of medicinal plants – history and prospects. Medicinal Plants. Domestication, biotechnology and regional importance. Ekiert, H.M., Romawat, K.G., Arora, J. (eds). Springer, Switzerland, pp. 771. DOI: https://doi.org/10.1007/978-3-030-74779-4_23
  12. Jäger, E.J., Müller, F., Ritz, Ch.M., Wlek, E., Wesche, K. (2017). Rothmaler – Exkursionsflora von Deutschland [Rothmaler – Excursion flora of Germany]. Gefässpflanzen: Atlasband. 13th ed. Springer Spektrum, Berlin. DOI: https://doi.org/10.1007/978-3-662-49710-4
  13. Karalija, E., Zeljković Ć.S., Tarkowski, P., Muratović, E., Parić, A. (2017). The effect of cytokinins on growth, phenolics, antioxidant and antimicrobial potential in liquid agitated shoot cultures of Knautia sarajevensis. Plant Cell Tiss. Organ Cult., 131(2), 347–357. https://doi.org/10.1007/s11240-017-1288-2 DOI: https://doi.org/10.1007/s11240-017-1288-2
  14. Karalija, E., Zeljković, S.Ć., Tarkowski, P., Muratović, E., Parić, A. (2018). Media composition affects seed dormancy, apical dominance and phenolic profile of Knautia sarajevensis (Dipsacaceae), Bosnian endemic. Acta Bot. Croat., 77(1), 70–79. https://doi.org/10.1515/botcro-2017-0011 DOI: https://doi.org/10.1515/botcro-2017-0011
  15. Karalija, E., Zeljković, S.Ć., Parić, A. (2020). Harvest time-related changes in biomass, phenolics and antioxidant potential in Knautia sarajevensis shoot cultures after elicitation with salicylic acid and yeast. In Vitro Cell. Dev. Biol. Plant., 56, 177–183. DOI: https://doi.org/10.1007/s11627-019-10028-0
  16. Kosch, A. (2013). Handbuch der Deutschen Arzneipflanzen [Handbook of German medicinal plants]. Softcover reprint of the original, Berlin and Heidelberg.
  17. Launert, E. (1981). Edible and medicinal plants. Hamlyn, London.
  18. Mabberley, D.J. (2017). Mabberley’s plant-book. Cambridge University Press, pp. 491. DOI: https://doi.org/10.1017/9781316335581
  19. Magryś, A., Olender, A., Tchórzewska, D. (2021). Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics. Arch. Microbiol., 203(5), 2257–2268. https://doi.org/10.1007/s00203-021-02248-z DOI: https://doi.org/10.1007/s00203-021-02248-z
  20. Mattalia, G., Quave C.L., Pieroni A. (2013). Traditional uses of wild food and medicinal plants among Brigasc, Kyé, and Provençal communities on the Western Italian Alps. Genet. Resour. Crop Evol., 60(2), 587–603. https://doi.org/10.1007/s10722-012-9859-x DOI: https://doi.org/10.1007/s10722-012-9859-x
  21. Moldoch, J., Szajwaj, B., Masullo, M., Pecio, L., Oleszek, W., Piacente, S., Stochmal, A. (2011). Phenolic constituents of Knautia arvensis aerial parts. Nat. Prod. Commun., 6(11), 1627–1630. DOI: https://doi.org/10.1177/1934578X1100601117
  22. Muravnik, L.E. (2021). The structural peculiarities of the leaf glandular trichomes: a review. Plant cell and tissue differentiation and secondary metabolites. Fundamentals and applications. Ramawat, K.G., Ekiert, H.M., Goyal, S. (eds). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-30185-9_3
  23. Polish Pharmacopoeia IX (2011). PTFarm, Polish Pharmaceutical Society, Warsaw, Poland, pp. 150.
  24. Rešetnik, I., Frajman, B., Schönswetter, P. (2016). Heteroploid Knautia drymeia includes K. gussonei and cannot be separated into diagnosable subspecies. Am. J. Bot., 103(7), 1300–1313. https://doi.org/10.3732/ajb.1500506 DOI: https://doi.org/10.3732/ajb.1500506
  25. Ribeiro, V.C., Leitão C.A.E. (2020). Utilisation of Toluidine blue O pH 4.0 and histochemical inferences in plant sections obtained by free-hand. Protoplasma, 257, 993–1008. https://doi.org/10.1007/s00709-019-01473-0 DOI: https://doi.org/10.1007/s00709-019-01473-0
  26. Rice-Evans, C., Miller, N., Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends Plant Sci., 2(4), 152–159. https://doi.org/10.1016/S1360-1385(97)01018-2 DOI: https://doi.org/10.1016/S1360-1385(97)01018-2
  27. Selje, N., Hoffmann, E.M., Muetzel, S., Ningrat, R., Wallace, R.J., Becker, K. (2007). Results of a screening program to identify plants or plant extracts that inhibit ruminal protein degradation. Br. J. Nut., 98(1), 45–53. https://doi.org/10.1017/s0007114507472506 DOI: https://doi.org/10.1017/S0007114507472506
  28. Solovchenko, A., Merzlyak, M. (2003). Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit. Photochem. Photobiol. Sci. 2(8), 861–866. https://doi.org/10.1039/B302478D DOI: https://doi.org/10.1039/b302478d
  29. Tawaha, K., Alali, F.Q., Gharaibeh, M., Mohammad, M., El-Elimat, T. (2007). Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem., 104(4), 1372–1378. https://doi.org/10.1016/j.foodchem.2007.01.064 DOI: https://doi.org/10.1016/j.foodchem.2007.01.064
  30. Zhang, Y., Cai, P., Cheng, G., Zhang, Y.A. (2022). Brief review of phenolic compounds identified from plants: their extraction, analysis, and biological activity. Nat. Prod. Commun. 17(1), 1–14. https://doi.org/10.1177/1934578X211069721 DOI: https://doi.org/10.1177/1934578X211069721

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.