Abstract
Species of the Miscanthus genus are plants of considerable economic importance. During their vegetation, they produce a considerable amount of biomass, which makes them a useful source of bioenergy. They are also highly ornamental and, being highly tolerant of salt in the soil, they are useful both in city greeneries and in the reclamation of degraded areas. Several million tons of shrimps per year are fished and processed at present. This generates a huge amount of biowaste, contributing to the progressive degradation of natural environment. Proper utilization of this waste is, therefore, becoming a burning issue. The present study was carried out in the years 2020–2021. The plant material consisted of two species of the genus Miscanthus, i.e. Miscanthus sinensis and Miscanthus × giganteus. Dried and ground biowaste, a material of high nutritional value generated during shrimp cleaning, was used as an experimental component of the substrate. The shrimp biowaste was mixed with the soil at a dose of 5%, 10%, and 15% (v/v). The control was a mineral soil without the dried biowaste. No other fertilizer was used during the plant growth. The plant material was harvested at the end of the growing season in the first year, and at full bloom and at the end of the growing season in the second year. The following mineral components were assessed: N, P, K, Ca, Mg, Zn, Cu, Mn, Fe, Cd, Pb, and Ni. Regardless of the species, the plants growing in the substrates enriched with dried shrimps had a higher content of macro- and micronutrients in their leaves in comparison with the controls. In the next years of cultivation, the content of the assessed mineral components in the leaves seemed to drop. The biowaste generated during shrimp cleaning may successfully be used as fertilizer in the cultivation of Miscanthus sinensis and Miscanthus × giganteus.
References
- Begum S., Ikejima K., Ara H., Islam M.Z. (2006). Solar drying as on option for shrimp processing biowaste in Khulna district-southwest Bangladesh. J. Appl. Sci., 6(6), 1302–1306. https://doi.org/10.3923/jas.2006.1302.1306
DOI: https://doi.org/10.3923/jas.2006.1302.1306
- Dufault R.J., Korkmaz A. (2000). Potential of biosolids from shrimp aquaculture as a fertilizer in bell pepper production. Compost Sci. Util., 8(4), 310–319. https://doi.org/10.1080/1065657X.2000.10702004
DOI: https://doi.org/10.1080/1065657X.2000.10702004
- Dufault R.J., Korkmaz A., Ward B. (2001). Potential of biosolids from shrimp aquaculture as a fertilizer for broccoli production. Compost Sci. Util., 9(2), 107–114. https://doi.org/10.1080/1065657X.2001.10702024
DOI: https://doi.org/10.1080/1065657X.2001.10702024
- Erhardt W., Götz E., Bödeker N., Seybold S. (2014). Zander Handwörtebuch der Pflanzennamen, Eugen Ulmer GmbH & Co, Stuttgart, 514.
- Gołąb-Bogacz I., Helios W., Kotecki A., Kozak K., Jama-Rodzeńska A. (2021). Content and uptake of ash and selected nutrients (K, Ca, S) with biomass of Miscanthus × giganteus depending on nitrogen fertilization. Agriculture, 11(1), 76. https://doi.org/10.3390/agriculture11010076
DOI: https://doi.org/10.3390/agriculture11010076
- Helios, W. (2018). [Growth and yielding of the giant miscanthus Miscanthus × giganteus Greef et Deu], Monogr. Wydaw. Uniw. Przyr. we Wrocławiu, Poland. In Polish.
- Himken M., Lammel J., Neukirchen D., Czypionka-Krause U., Olfs H.-W. (1997). Cultivation of miscanthus under West European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil, 189(1), 117–126. https://doi.org/10.1023/A:1004244614537
DOI: https://doi.org/10.1023/A:1004244614537
- IMARC (2021). Shrimp market: global industry trends, share, size, growth, opportunity and forecast 2021–2026. IMARC Group, USA.
DOI: https://doi.org/10.1016/j.focat.2021.07.011
- Jugnia L.B., Mottiar Y., Djuikom E., Cabral A.R., Greer C.W. (2012). Effect of compost, nitrogen salts, and NPK fertilizers on methane oxidation potential at different temperatures. Appl. Microbiol. Biotechnol., 93, 2633–2643. https://doi.org/10.1007/s00253-011-3560-4
DOI: https://doi.org/10.1007/s00253-011-3560-4
- Kalembasa D., Malinowska E. (2009). The yield and content of trace elements in biomass of Miscanthus sacchariflorus (Maxim.) Hack. and in soil in the third year of a pot experiment. J. Elem., 14(4), 685–691. https://doi.org/10.5601/jelem.2009.14.4.685-691
DOI: https://doi.org/10.5601/jelem.2009.14.4.685-691
- Mao X., Guo N., Sun J., Xue C. (2017). Comprehensive utilization of shrimp waste based on biotechnological methods: a review. J. Clean. Prod., 143, 814–823. https://doi.org/10.1016/j.jclepro.2016.12.042
DOI: https://doi.org/10.1016/j.jclepro.2016.12.042
- Mathew P., Nair K.G. (2006). Ensilation of shrimp waste by Lactobacillus fermentum. Fish. Technol., 43, 59–64.
- Mejía-Saulés J.E., Waliszewski K.N., Garcia-Alvardo M.A., Cruz-Camarillo R. (2006). The use of crude shrimp shell powder for chitinase production by serratia marcescens WF. Food Technol. Biotechnol., 44(1), 95–100.
- Nirmal N.P., Santivarangkna Ch., Rajput M.S., Benjakul S. (2020). Trends in shrimp processing waste utilization: an industrial prospective. Trends Food Sci. Technol.,103, 20–35. https://doi.org/10.1016/j.tifs.2020.07.001
DOI: https://doi.org/10.1016/j.tifs.2020.07.001
- Podsiadło C., Jaroszewska A. (2013). [Effect of irrigation and fertilization of nitrogen and potassium on photosynthetic activity of cherry]. Infrastrukt. Ekol. Ter. Wiejskich 2/I, 93–101. In Polish.
- Prameela K., Murali M.Ch., Smitha P.V., Hemalatha K.P.J. (2010). Extraction of pharmaceutically important chitin and carotenoides from shrimp biowaste by microbial fermentation method. J. Pharm. Res., 3(10), 2393–2395.
- Prameela K., Murali M.Ch., Hemalatha K.P.J. (2012). Efficient use of shrimp waste: present and future trends. Appl Microbiol Biotechnol., 93(1), 17–29. https://doi.org/10.1007/s00253-011-3651-2
DOI: https://doi.org/10.1007/s00253-011-3651-2
- Rojas J., Quintero J., Ciro Y., Silva J. (2019). comparative evaluation of sonicated shrimp waste hydrolysates as potential fertilizers for legumes. HortSci., 54(9), 1585–1592. https://doi.org/10.21273/HORTSCI14103-19
DOI: https://doi.org/10.21273/HORTSCI14103-19
- Roncucci N., Nassi o Di Nasso N., Tozzini C., Bonari E., Ragaglini G. (2015). Miscanthus × giganteus nutrient concentrations and uptakes in autumn and winter harvests as influenced by soil texture, irrigation and nitrogen fertilization in the Mediterranean. GCB Bioenergy, 7(5), 1009–1018. https://doi.org/10.1111/gcbb.12209
DOI: https://doi.org/10.1111/gcbb.12209
- Sachindra N.M., Bhaskar N., Mahendrakar N.S. (2005). Carotenoids in different body components of Indian shrimps. J. Sci. Food Agric., 85(1), 167–172. https://doi.org/10.1002/jsfa.1977
DOI: https://doi.org/10.1002/jsfa.1977
- Sachindra N.M., Bhaskar N., Siddegowda G.S., Sathisha A.D., Suresh P.V. (2007). Recovery of carotenoids from ensilaged shrimp waste. Bioresour. Technol., 98(8), 1642–1646. https://doi.org/10.1016/j.biortech.2006.05.041
DOI: https://doi.org/10.1016/j.biortech.2006.05.041
- Shoji S., Kurebayashi T., Yamada I. (1990). Growth and chemical composition of Japanese pampas grass (Miscanthus sinensis) with special reference to the formation of dark-colored andisols in northeastern Japan. Soil Sci. Plant Nutr., 36(1), 105–120. https://doi.org/10.1080/00380768.1990.10415715
DOI: https://doi.org/10.1080/00380768.1990.10415715
- Sinha S., Tripathi P., Chand S. (2012). A new bifunctional chitosanase enzyme from Streptomyces sp. and its application in production antioxidant chitooligosaccharides. Appl. Biochem. Biotechnol., 167(5), 1029–1039. https://doi.org/10.1007/s12010-012-9546-6
DOI: https://doi.org/10.1007/s12010-012-9546-6
- Subasinghe S. (1999). Chitin from shellfish waste- health benefits over-shadowing industrial uses. Infofish Int., 3, 58–65.
- Synowiecki J., Al-Khateeb N.A.A.Q. (2000). The recovery of protein hydrolysate during enzymatic isolation of chitin from shrimp Crangon crangon processing discards. Food Chem., 68(2), 147–152. https://doi.org/10.1016/S0308-8146(99)00165-X
DOI: https://doi.org/10.1016/S0308-8146(99)00165-X
- Świontek Brzezińska M., Lalke-Porczyk E., Donderski W. (2008). Utilization of shrimp waste as respiration substrate by planktonic and benthic microorganisms. Pol. J. Environ. Stud., 17(2), 273–282.
- Wang S.L., Chang T.J., Liang T.W. (2010). Conversion and degradation of shellfish wastes by Serratia sp. TKU016 fermentation for the production of enzymes and bioactive materials. Biodegradation, 21(3), 321–333. https://doi.org/10.1007/s10532-009-9303-x
DOI: https://doi.org/10.1007/s10532-009-9303-x
- Zuorro A., Cassiani-Cassiani D., Meza-González D.A., Moreno-Sader K.A., González-Delgado Á.D. (2020). evaluation of shrimp waste valorization combining computer-aided simulation and numerical descriptive inherent safety technique (NuDIST). Appl. Sci., 10(15), 5339. https://doi.org/10.3390/app10155339
DOI: https://doi.org/10.3390/app10155339
- Żurawik P. (2013). The impact of dried shrimp waste and chitosan as well as of the methods of cultivation on growth, development, decorative value and yield of cormlets of freesia (Freesia Eckl. ex Klatt). West Pom. Univ. Technol, Szczecin, 1–128.
- Żurawik P. (2020). Growth, development and ornamental value of Miscanthus sinensis (Andersson) species depending on the dose of shrimp biowaste. Agriculture, 10(3), 67. https://doi.org/10.3390/agriculture10030067
DOI: https://doi.org/10.3390/agriculture10030067
Downloads
Download data is not yet available.
-
Sylwester Smoleń,
Łukasz Skoczylas,
Roksana Rakoczy,
Iwona Ledwożyw-Smoleń,
Marta Liszka-Skoczylas,
Aneta Kopeć,
Ewa Piątkowska,
Renata Bieżanowska-Kopeć,
Mirosław Pysz,
Aneta Koronowicz,
Joanna Kapusta-Duch,
Włodzimierz Sady,
SELECTED ASPECTS OF NITROGEN METABOLISM AND QUALITY OF FIELD-GROWN LETTUCE (Lactuca sativa L.) DEPENDING ON THE DIVERSIFIED FERTILIZATION WITH IODINE AND SELENIUM COMPOUNDS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 14 No. 5 (2015)
-
Eugeniusz Kołota,
Katarzyna Adamczewska-Sowińska,
Agnieszka Balbierz,
RESPONSE OF SWISS CHARD (Beta vulgaris L. var. cicla L.) TO NITROGEN FERTILIZATION
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 16 No. 2 (2017)
-
Eugeniusz Kołota,
Katarzyna Adamczewska-Sowińska,
LIVING MULCHES IN VEGETABLE CROPS PRODUCTION: PERSPECTIVES AND LIMITATIONS (A REVIEV)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 12 No. 6 (2013)
-
Tomasz Kleiber,
Bartosz Markiewicz,
APPLICATION OF “TYTANIT” IN GREENHOUSE TOMATO GROWING
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 12 No. 3 (2013)
-
Jacek Glonek,
Andrzej Komosa,
FERTIGATION OF HIGHBUSH BLEUEBERRY (Vaccinium corymbosum L.). PART III. THE EFFECT ON NUTRIENT CONTENTS IN LEAVES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 12 No. 3 (2013)
-
Melek Ekinci,
Metin Turan,
Ertan Yildirim,
Adem Güneş,
Recep Kotan,
Atilla Dursun,
EFFECT OF PLANT GROWTH PROMOTING RHIZOBACTERIA ON GROWTH, NUTRIENT, ORGANIC ACID, AMINO ACID AND HORMONE CONTENT OF CAULIFLOWER (Brassica oleracea L. var. botrytis) TRANSPLANTS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 13 No. 6 (2014)
-
Memis Kesdek,
Saban Kordali,
Kerziban Coban,
Ayse Usanmaz,
Sezai Ercisli,
LARVICIDAL EFFECT OF SOME PLANT EXTRACTS ON THE PINE PROCESSIONARY MOTH, Thaumetopoea pityocampa (Denis & Schiffermuller) IN LABORATORY CONDITIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 13 No. 5 (2014)
-
Sylwester Smoleń,
Łukasz Skoczylas,
Roksana Rakoczy,
Iwona Ledwożyw-Smoleń,
Aneta Kopeć,
Ewa Piątkowska,
Renata Bieżanowska-Kopeć,
Mirosław Pysz,
Aneta Koronowicz,
Joanna Kapusta-Duch,
Włodzimierz Sady,
MINERAL COMPOSITION OF FIELD-GROWN LETTUCE (Lactuca sativa L.) DEPENDING ON THE DIVERSIFIED FERTILIZATION WITH IODINE AND SELENIUM COMPOUNDS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 14 No. 6 (2015)
-
Anna Jaroszewska,
THE EFFECT OF IRRIGATION AND MINERAL FERTILIZATION ON THE PHOTOSYNTHETIC ACTIVITY AND WATER USE IN RESPECT OF CHERRY CV. ’KELLERIS 16’ YIELDING
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 14 No. 5 (2015)
-
Jadwiga Wierzbowska,
Bożena Cwalina-Ambroziak,
Małgorzata Głosek-Sobieraj,
Stanisław Sienkiewicz,
YIELD AND MINERAL CONTENT OF EDIBLE CARROT DEPENDING ON CULTIVATION AND PLANT PROTECTION METHODS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 16 No. 2 (2017)
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.