Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 6 (2023)

Articles

Variations of yield, biochemical and antioxidative responses in sesame with silicon and cytokinin treatments under drought stress

DOI: https://doi.org/10.24326/asp.hc.2023.5048
Submitted: January 21, 2023
Published: 2023-12-22

Abstract

Drought is one of the major limiting factors for crops that severely reduce plant growth and productivity. The appli­cation of cytokinin (Ck) and silicon (Si) fertilizers can help increase tolerance to drought stress in sesame plants. The present study aimed to evaluate the effects of Ck and Si fertilizers on seed yield, malondialdehyde (MDA) content, proline content, and antioxidant enzyme activities in sesame plants under drought-stress conditions. The experiment was conducted as a split plot-factorial in a randomized complete block design with three replications at Firuzkandeh Agricultural Research Station during two crop years of 2020 and 2021. The main plot was three drought stress levels: control, moderate drought stress (MDS), and severe drought stress (SDS), whereas the subplots were three Si appli­cation levels: control or non-use of Si, calcium silicate and nano-Si, and two Ck application levels: control or non-use of Ck, Ck application. The results indicated that the sesame seed yield was reduced by 9.3% under MDS and by 32.7% under SDS when compared with control conditions. The highest MDA content and proline accumulation were observed when the plants were subjected to SDS, whereas the higher activity of antioxidant enzymes occurred under MDS. Higher activity of antioxidant enzymes and reduction of MDA content was observed in the plants treated by combined application of Si and Ck under MDS. However, the higher seed yield, greater proline content, and higher antioxidant enzyme activities were obtained from plants treated by nano-Si than calcium silicate. Overall, the results of the present study revealed that the foliar application of nano-Si + Ck can be a promising option for mitigating the negative impacts of drought stress and improving sesame seed yield.

References

  1. Aebi, H. (1984). Catalase in vitro. Methods Enzymol., 105, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3 DOI: https://doi.org/10.1016/S0076-6879(84)05016-3
  2. Ahmad, Z., Waraich, E.A., Barutçular, C., Hossain, A., Erman, M., ÇIĞ, F., Gharib, H., EL Sabagh, A. (2020). Enhancing drought tolerance in wheat through improving morpho- physiological and antioxidants activities of plants by the supplementation of foliar silicon. Phyton, 89(3), 529–539. https://doi.org/10.32604/phyton.2020.09143 DOI: https://doi.org/10.32604/phyton.2020.09143
  3. Akhila, S.N., Abraham, T.K., Jaya, D.S. (2008). Studies on the changes in lipid peroxidation and antioxidants in drought stress induced cowpea Vigna unguiculata L. varieties. J. Environ. Biol., 29, 689–691.
  4. Amin, M., Ahmad, R., Ali, A., Hussain, I., Mahmood, R., Aslam, M., Lee, D.J. (2018). Influence of silicon fertilization on maize performance under limited water supply. Silicon, 10, 177–183. https://doi.org/10.1007/s12633-015-9372-x DOI: https://doi.org/10.1007/s12633-015-9372-x
  5. Amini, S., Ghobadi, C., Yamchi, A. (2015). Proline accumulation and osmotic stress, an overview of p5cs gens in plants. J. Plant Molecul. Breed., 3(2), 44–55. https://doi.org/10.22058/jpmb.2015.17022
  6. Amirjani, M.R., Mahdiyeh, M. (2013). Antioxidative and biochemical responses of wheat to drought stress. ARPN J. Agric. Biol. Sci., 8, 291–300.
  7. Askarnejad, M., Sodaeeizadeh, H., Mosleh Arani, A., Yazdani Biouki, R., Mavandi, P. (2019). Effect of silicon in improving drought tolerance of stevia (Stevia rebaudiana Bertoni) under moisture stress. Environ. Stress Crop Sci., 12(3), 847–863. https://doi.org/10.22077/escs.2019.1559.1349
  8. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil., 39, 205–207. https://doi.org/10.1007/BF00018060 DOI: https://doi.org/10.1007/BF00018060
  9. Bukhari, M.A., Sharif, M.S., Ahmad, Z., Barutçular, C., Afzal, M., Hossain, A., EL Sabagh, A. (2021). Silicon mitigates the adverse effect of drought in canola (Brassica napus l.) through promoting the physiological and antioxidants activity. Silicon, 13, 3817–3826. https://doi.org/10.1007/s12633-020-00685-x DOI: https://doi.org/10.1007/s12633-020-00685-x
  10. Cao, B.I., Ma, Q., Zhao, Q., Wang, L., Xu, K. (2015). Effects of silicon on absorbed light allocation, antioxidant enzymes and ultra structure of chloroplasts in tomato leaves under simulated drought stress. Sci. Hortic., 194, 53–62. https://doi.org/10.1016/j.scienta.2015.07.037 DOI: https://doi.org/10.1016/j.scienta.2015.07.037
  11. Dossa, K., Yehouessi, L.W., Likeng-Li-Ngue, B.C., Diouf, D., Liao, B., Zhang, X., Cissé, N., Bell, J. (2017). Comprehensive screening of some west and central African sesame genotypes for drought resistance probing by agromorphological, physiological, biochemical and seed quality traits. Agronomy, 7(4), 83. https://doi.org/10.3390/agronomy7040083 DOI: https://doi.org/10.3390/agronomy7040083
  12. Eisvand, H.R., Tavakkol-Afshari, R., Sharifzadeh, F., Maddah Arefi, H., Hesamzadeh Hejazi, S.M. (2010). Effects of hormonal priming and drought stress on activity and isozyme profiles of antioxidant enzymes in deteriorated seed of tall wheatgrass (Agropyron elongatum Host). Seed Sci Technol., 38, 280–297. https://doi.org/10.15258/sst.2010.38.2.02 DOI: https://doi.org/10.15258/sst.2010.38.2.02
  13. Elewa, T.A., Sadak, M.S., Saad, A.M. (2017). Proline treatment improves physiological responses in quinoa plants under drought stress. Biosci. Res., 14(1), 21–33.
  14. Eskandari, H., ZehtabSalmasi, S., Ghassemi-Golezani, K., Gharineh, M.H. (2009). Effects of water limitation on grain and oil yields of sesame cultivars. J. Food Agric. Environ., 7(2), 339–342.
  15. Gholipur Noveyri, S., Zamani, G.R., Jami Al-Ahmadi, M. (2022). The effect of putrescine and calcium nitrate on physiological properties and sesame (Sesamum indicum L.) yield under moisture stress. Environ Stress Crop Sci., 15(2), 335–346. https://doi.org/10.22077/escs.2020.3833.1922
  16. Gong, H., Zhu, X., Chen, K., Wang, S., Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci., 169, 313–321. https://doi.org/10.1016/j.plantsci.2005.02.023 DOI: https://doi.org/10.1016/j.plantsci.2005.02.023
  17. Hatamvand, M., Hasanloo, T., Dehghan Nayeri, F., Shiranirad, A., Tabatabaei, S., Hosseini, S. (2015). Evaluation of some physiological and biochemical indices of canola cultivars in response to drought stress. Environ. Stress. Crop Sci., 7(2), 173–185. https://doi.org/10.22077/escs.2015.174
  18. Heath, R., Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125, 189–198. https://doi.org/10.1016/0003-9861(68)90654-1 DOI: https://doi.org/10.1016/0003-9861(68)90654-1
  19. Hoque, M.A., Banu, M.N.A., Nakamura, Y., Shimoishi, Y., Murata, Y. (2008). Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J. Plant Physiol., 165(8), 813–824. https://doi.org/10.1016/j.jplph.2007.07.013 DOI: https://doi.org/10.1016/j.jplph.2007.07.013
  20. Hussein, Y., Amin, G., Azab, A., Gahin, H. (2015). Induction of drought stress resistance in sesame (Sesamum indicum L.) plant by salicylic acid and kinetin. J. Plant Sci., 10(4), 128–141. https://doi.org/10.3923/jps.2015.128.141 DOI: https://doi.org/10.3923/jps.2015.128.141
  21. Khalvandi, M., Siosemardeh, A., Roohi, E., Keramati, S. (2021). Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon, 7(1), e05908. https://doi.org/10.1016/j.heliyon.2021.e05908 DOI: https://doi.org/10.1016/j.heliyon.2021.e05908
  22. Kheyri, N., Ajam Norouzi, H., Mobasser, H.R., Torabi, B. (2018). Effect of different resources and methods of silicon and zinc application on agronomic traits, nutrient uptake and grain yield of rice (Oryza sativa L.). Appl. Ecol. Environ. Res., 16, 5781–5798. https://doi.org/10.15666/aeer/1605_57815798 DOI: https://doi.org/10.15666/aeer/1605_57815798
  23. Kheyri, N., Ajam Norouzi, H., Mobasser, H.R., Torabi, B. (2019a). Comparison of NPs foliar application of silicon and zinc with soil application on agronomic and physiological traits of rice (Oryza sativa L.). Iranian J. Field Crops Res., 17, 503–515. https://doi.org/10.22067/gsc.v17i3.80028
  24. Kheyri, N., Ajam Norouzi, H., Mobasser, H.R., Torabi, B. (2019b). Effects of silicon and zinc nanoparticles on growth, yield, and biochemical characteristics of rice. Agron. J., 111, 3084–3090. https://doi.org/10.2134/agronj2019.04.0304 DOI: https://doi.org/10.2134/agronj2019.04.0304
  25. Kim, Y.H., Khan, A.L., Waqas, M., Lee, I.J. (2017). Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front Plant Sci., 8, 1–7. https://doi.org/10.3389/fpls.2017.00510 DOI: https://doi.org/10.3389/fpls.2017.00510
  26. Li, T.T., Hu, Y.Y., Du, X.H., Tang, H., Shen, C.H., Wu, J.S. (2014). Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS ONE., 9, e109492. https://doi.org/10.1371%2Fjournal.pone.0109492 DOI: https://doi.org/10.1371/journal.pone.0109492
  27. Maghsoudi, K., Emam, Y., Pessarakli, M. (2016). Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. J. Plant Nutr., 39, 1001–1015. https://doi.org/10.1080/01904167.2015.1109108 DOI: https://doi.org/10.1080/01904167.2015.1109108
  28. Maksimovic, J.D., Bogdanovic, J., Maksimovic, V., Nikolic M. (2007). Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. J. Plant Nutr. Soil Sci., 170, 739–44. https://doi.org/10.1002/jpln.200700101 DOI: https://doi.org/10.1002/jpln.200700101
  29. Mauad, M., Crusciol, C.A.C., Nascente, A.S., Filho, H.G., Lima, G.P.P. (2016). Effects of silicon and drought stress on biochemical characteristics of leaves of upland rice cultivars. Rev. Ciênc. Agron., 47(3), 532–539. https://doi.org/10.5935/1806-6690.20160064 DOI: https://doi.org/10.5935/1806-6690.20160064
  30. Mehmood, M., Pérez-Llorca, M., Casadesús, A., Farrakh, S., Munné-Bosch, S. (2021). Leaf size modulation by cytokinins in sesame plants. Plant Physiol. Biochem., 167, 763–770. https://doi.org/10.1016/j.plaphy.2021.09.013 DOI: https://doi.org/10.1016/j.plaphy.2021.09.013
  31. Mohsennia, O., Jalilian, J. (2012). Response of safflower seed quality characteristics to different soil fertility systems and irrigation disruption. Int. Res. J. Appl. Basic Sci., 3(5), 968–976.
  32. Momeni, S., Fahmideh, L., Emamjomeh, A., Solouki, M., Zahiri, J. (2021). Effect of drought stress on morphological and physiological traits of sesame (Sesamum indicum L.). J. Iranian Plant Ecophysiol. Res., 15(60), 61–78.
  33. Movahhedi Dehnavi, M., Misagh, M., Yadavi, A., Merajipoor, M. (2017). Physiological responses of sesame (Sesamum indicum L.) to foliar application of boron and zinc under drought stress. J. Plant Proc. Func., 6(20), 27–35.
  34. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate peroxidase in spinach chloroplasts. Plant Cell Physiol., 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232 DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076232
  35. Opabode, J.T., Owojori, S. (2018). Response of African eggplant (Solanum macrocarpon L.) to foliar application of 6-benzylaminopurine and gibberellic acid. J. Hortic. Res., 26(2), 37–45. https://doi.org/10.2478/johr-2018-0014 DOI: https://doi.org/10.2478/johr-2018-0014
  36. Pourghasemian, N., Landberg, T., Ehsanzadeh, P., Greger, M. (2019). Different response to Cd stress in domesticated and wild safflower (Carthamus spp.). Ecotoxic Environ. Safety, 171, 321–328. https://doi.org/10.1016/j.ecoenv.2018.12.052 DOI: https://doi.org/10.1016/j.ecoenv.2018.12.052
  37. Pourghasemian, N., Moradi, R., Naghizadeh, M., Landberg, T. (2020). Mitigating drought stress in sesame by foliar application of salicylic acid, beeswax waste and licorice extract. Agric. Water Manage., 231, 105997. https://doi.org/10.1016/j.agwat.2019.105997 DOI: https://doi.org/10.1016/j.agwat.2019.105997
  38. Rahimi, S., Hatami, M., Ghorbanpour, M. (2019). Effect of seed priming with nanosilicon on morpho-physiological characterestics, quercetin content and antioxidant capacity in calendula officinalis L. under drought stress conditions. J. Med Plants., 72, 186–203. https://doi.org/10.29252/jmp.4.72.S12.186 DOI: https://doi.org/10.29252/jmp.4.72.S12.186
  39. Salek Mearaji, H., Tavakoli, A., Niazsepahvand, A. (2020). The effect of cytokinin on physiological and related traits with yield of quinoa under drought stress conditions. J. Crops Improv., 22(3), 419–432. https://doi.org/10.22059/jci.2020.292821.2298
  40. Sepehri, A., Rouhi, H.R. (2017). Effect of cytokinin on morphological and physiological characteristics an antioxidant enzymes activity of aged groundnut (Arachis hypogaea L.) seeds under drought stress. Iranian J. Seed Sci. Tech., 5(2), 181–198.
  41. Velikova, V., Yordanov, I., Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci., 151, 59–66. https://doi.org/10.1016/S0168-9452(99)00197-1 DOI: https://doi.org/10.1016/S0168-9452(99)00197-1
  42. Werner, T., Nehnevajova, E., Köllmer, I., Novák, O., Strnad, M., Krämer, U., Schmülling, T. (2010). Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell, 22(12), 3905–3920. https://doi.org/10.1105/tpc.109.072694 DOI: https://doi.org/10.1105/tpc.109.072694
  43. Yin, L., Wang, S., Liu, P., Wang, W., Cao, D., Deng, X. (2014). Silicon-mediated changes in polyamine and 1-aminocyclopropane-1- carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor. Plant Physiol. Biochem., 80, 268–277. https://doi.org/10.1016/j.plaphy.2014.04.014 DOI: https://doi.org/10.1016/j.plaphy.2014.04.014
  44. Yousefzadeh Najafabadi, M., Ehsanzadeh, P. (2019). Effect of salicylic acid on photosynthetic pigments content, antioxidant enzyme activity and yield components of three sesame genotypes under different irrigation regimes. J. Plant Proc. Func., 8(33), 137–152.
  45. Zahedi, S.M., Moharrami, F., Sarikhani, S., Padervand, M. (2020). Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Sci Rep., 10(1), 1–18. https://doi.org/10.1038/s41598-020-74273-9 DOI: https://doi.org/10.1038/s41598-020-74273-9
  46. Zaheer, M.S., Raza, M.A.S., Saleem, M.F., Erinle, K.O., Iqbal, R., Ahmad, S. (2019). Effect of rhizobacteria and cytokinins application on wheat growth and yield under normal vs drought conditions. Commun. Soil Sci. Plant Anal., 50(20), 2521–2533. https://doi.org/10.1080/00103624.2019.1667376 DOI: https://doi.org/10.1080/00103624.2019.1667376
  47. Zarei, A., Masoud Sinaki, J., Amini Dehaghi, M., Damavandei, A. (2020). Evaluation of biochemical and agronomic traits of sesame cultivars under application of phosphorus nano-chelate and chitosan fertilizers under irrigation cut-off. Environ Stress. Crop Sci., 13(2), 471–489. https://doi.org/10.22077/escs.2019.2036.1503
  48. Zhu, Y., Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agron. Sustain. Develop., 34, 455–472. https://doi.org/10.1007/s13593-013-0194-1 DOI: https://doi.org/10.1007/s13593-013-0194-1

Downloads

Download data is not yet available.

Similar Articles

<< < 14 15 16 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.