Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 4 (2024)

Articles

Effects of molybdenum on growth and fruit quality of small fruit melon (Cucumis melo L.) cultivated under high-temperature stress

DOI: https://doi.org/10.24326/asphc.2024.5345
Submitted: February 18, 2024
Published: 2024-09-06

Abstract

Recurrent and prolonged heat waves during summer have significantly impacted the growth and quality of cultivated melons in China. Molybdenum (Mo), a trace element crucial for the plant’s photosynthesis process under normal planting conditions, is posited to not only improve plant stress tolerance but also enhance fruit quality and nutritional content. In this study, melon cv. ‘Japanese Sweet Treasure’ was used as the experimental material. Various concentrations of ammonium molybdate solution (0, 0.05, 0.1, 0.2, 0.4 mg·L–1) were foliar sprayed to examine their impact on the growth, photosynthetic characteristics, carbohydrate metabolism, and fruit quality of melons under high-temperature stress. The results indicated that plants sprayed with Mo exhibited enhanced plant parameters, including height, stem diameter, root volume, root activity, and physiological characteristics of melons under high-temperature stress, in comparison to the control (CK). The most significant improvements were observed in plants treated with 0.1 mg·L–1 Mo (T2). This treatment also showed higher improvement in melon net photosynthetic rate (Pn), transpiration rate (Tr) and total chlorophyll relative to other treatments. It also significantly promotes carbohydrate metabolism in melon plant leaves under high-temperature stress, enhancing their antioxidant enzyme activity. Melon plants exhibit a respective increase in sucrose, soluble sugars, superoxide dismutase (SOD), and peroxidase (POD) compared to the control. Melon sprayed with 0.1 mg·L–1 Mo showed significantly higher levels of vitamin C, soluble proteins, and soluble solids in fruits compared to other treatments, with a respective increase of 27.9% in individual fruit weight and 20.1% in per-plant yield compared to the CK. In conclusion, spraying 0.1 mg·L–1 Mo effectively mitigates damage caused by high-temperature stress during melon cultivation. It enhances the photosynthetic capacity of melon leaves, promotes carbohydrate metabolism in plant leaves, and thereby strengthens stress resistance. This comprehensive improvement leads to enhanced quality and yield of melon fruits.

References

  1. Adhikary, B.H., Shrestha, J., Baral, B.R. (2010). Effects of micronutrients on growth and productivity of maize in acidic soil. Int. J. Sci. Basic Appl. Res., 1, 8–15.
  2. Ahsin, M., Hussain, S., Rengel, Z., Amir, M. (2020). Zinc status and its requirement by rural adults consuming wheat from control or zinc-treated fields. Environ Geochem. Health., 42, 1877–1892. https://doi.org/10.1007/s10653-019-00463-8 DOI: https://doi.org/10.1007/s10653-019-00463-8
  3. Al-Issawi, M., Rihan, H.Z., Al-Shmgani, H., Fuller, M.P., (2016). Molybdenum application enhances antioxidant enzyme activity and COR15a protein expression under cold stress in wheat. J. Plant Interact., 11, 5–10. https://doi.org/10.1080/17429145.2015.1129074 DOI: https://doi.org/10.1080/17429145.2015.1129074
  4. Ali, S., Rizwan, M., Arif, M.S., Ahmad, R., Hasanuzzaman, M., Ali, B., Hussain, A. (2020). Approaches in enhancing thermotolerance in plants: an updated review. J. Plant Growth. Regul., 39, 456–480. https://doi.org/10.1007/s00344-019-09994-x DOI: https://doi.org/10.1007/s00344-019-09994-x
  5. Al-juthery, H.W.A., Al-Maamouri, E.H.O. (2020). Effect of urea and nano-nitrogen fertigation and foliar application of nano-boron and molybdenum on some growth and yield parameters of potato. Al-Qadisiyah J. Agric. Sci., 10(1), 253–263. http://qu.edu.iq/jouagr/index.php/QJAS/index DOI: https://doi.org/10.33794/qjas.2020.167074
  6. Amarasinghe, R.M.N.T., Sakimin, S.Z., Wahab, P.E.M., Ramlee, S., Jaafar, J.N. (2021) Growth, physiology and yield responses of four rock melon (Cucumis melo var. Cantaloupensis) cultivars in elevated temperature. Plant Arch., 21, 259–266. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no2.040 DOI: https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no2.040
  7. Arnao, M., Hernández-Ruiz, J. (2020). Melatonin in flowering, fruit set and fruit ripening. Plant Reprod., 33, 77–87. https://doi.org/10.1007/s00497-020-00388-8 DOI: https://doi.org/10.1007/s00497-020-00388-8
  8. Asgher, M., Per, T.S., Masood, A., Fatma, M., Freschi, L., Corpas, F.J., Khan, N.A., (2017). Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environ Sci. Pollut. Res. Int., 24, 2273–2285. https://doi.org/10.1007/s11356-016-7947-8 DOI: https://doi.org/10.1007/s11356-016-7947-8
  9. Chapin, T.P., Todd, A.S., Zeigler, M.P. (2014). Robust, low‐cost data loggers for stream temperature, flow intermittency, and relative conductivity monitoring. Water Resour. Res., 50(8), 6542–6548. https://doi.org/10.1002/2013WR015158 DOI: https://doi.org/10.1002/2013WR015158
  10. Cheevitsopon, E., Sirisomboon, P. (2018). Evaluation of salt content of curry soup containing coconut milk by near infrared spectroscopy. J. Near Infrared. Spec., 26, 149–158. https://doi.org/10.1177/09670335187827 DOI: https://doi.org/10.1177/0967033518782781
  11. Dhaliwal, S., Naresh, R., Mandal, A., Singh, R., Dhaliwal, M.J.E., Indicators, S. (2019). Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up. A review. Environ Sustain. Ind., 1, 100007. DOI: https://doi.org/10.1016/j.indic.2019.100007
  12. Fang, G., Xue-Hua, G., Tong-Tong, W., Lian-Qiang, S., Ying-Jie, L., Jia-Lei, Z., Chuan-Ting, Y., Feng, Z., Xiao-Kang, Y., Hua-Jian, Z. (2013). Effects of Cadmium stresses on physiological characteristics, pod yield and seed quality of peanut. In: 2013 Third International Conference on Intelligent System Design and Engineering Applications. Hong Kong, China, pp, 655–661. https://doi.org/10.1109/ISDEA.2012.157 DOI: https://doi.org/10.1109/ISDEA.2012.157
  13. Gao, H.f., Peng, F.t., Xiao, Y.s., Zhang, Y-f., Wang, G.d., Sun, X.w., HE, Y. (2019). Physiological and biological mechanisms of molybdenum on alleviating chilling stress of peach leaves. J. Plant Nutr. Ferti., 25, 1211–1221. https://doi.org/10.11674/zwyf.18274
  14. Hawrylak-Nowak, B., Dresler, S., Rubinowska, K., Matraszek-Gawron, R., Woch, W., Hasanuzzaman, M. (2018). Selenium biofortification enhances the growth and alters the physiological response of lamb's lettuce grown under high temperature stress. Plant Physiol. Biochem., 127, 446–456. https://doi.org/10.1016/j.plaphy.2018.04.018 DOI: https://doi.org/10.1016/j.plaphy.2018.04.018
  15. Hu, L., Liao, W., Dawuda, M.M., Yu, J., Lv, J. (2017). Appropriate NH4+: NO3− ratio improves low light tolerance of mini Chinese cabbage seedlings. BMC Plant Biol. 17, 1–14. https://doi.org/10.1186/s12870-017-0976-8 DOI: https://doi.org/10.1186/s12870-017-0976-8
  16. Hua, W., Dai, A., Qin, M., Hu, Y., Cui, Y. (2023). How unexpected was the 2022 summertime heat extremes in the middle reaches of the Yangtze River. Geophys Res. Lett., 50, e2023GL104269. https://doi.org/10.1029/2023GL104269 DOI: https://doi.org/10.1029/2023GL104269
  17. Imran, M., Sun, X., Hussain, S., Ali, U., Rana, M.S., Rasul, F., Saleem, M.H., Moussa, M.G., Bhantana, P., Afzal, J. (2019). Molybdenum-induced effects on nitrogen metabolism enzymes and elemental profile of winter wheat (Triticum aestivum L.) under different nitrogen sources. Int. J. Mol. Sci., 20, 3009. https://doi.org/10.3390/ijms20123009 DOI: https://doi.org/10.3390/ijms20123009
  18. Jahan, M.S., Guo, S., Sun, J., Shu, S., Wang, Y., Abou, El-Yazied, A., Alabdallah, N.M., Hikal, M., Mohamed, M.H., Ibrahim, M.F. (2021). Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiol, Biochem., 167, 309–320. https://doi.org/10.1016/j.plaphy.2021.08.002 DOI: https://doi.org/10.1016/j.plaphy.2021.08.002
  19. Jahan, M.S., Wang, Y., Shu, S., Zhong, M., Chen, Z., Wu, J., Sun, J., Guo, S. (2019). Exogenous salicylic acid increases the heat tolerance in Tomato (Solanum lycopersicum L.) by enhancing photosynthesis efficiency and improving the antioxidant defense system through scavenging of reactive oxygen species. Sci. Hortic., 247, 421–429. https://doi.org/10.1016/j.scienta.2018.12.047 DOI: https://doi.org/10.1016/j.scienta.2018.12.047
  20. Jiang, D., Lu, B., Liu, L., Duan, W., Chen, L., Li, J., Zhang, K., Sun, H., Zhang, Y., Dong, H. (2020). Exogenous melatonin improves salt stress adaptation of cotton seedlings by regulating active oxygen metabolism. PeerJ, 8, e10486. https://doi.org/10.7717/peerj.10486 DOI: https://doi.org/10.7717/peerj.10486
  21. Kareem, F., Rihan, H., Fuller, M. (2017). The effect of exogenous applications of salicylic acid and molybdenum on the tolerance of drought in wheat. Agric. Res. Tech. Open Access J., 9(4), 555768. https://doi.org/10.19080/ARTOAJ.2017.09.555768 DOI: https://doi.org/10.19080/ARTOAJ.2017.09.555768
  22. Kavi Kishor, P.B., Suravajhala, P., Rathnagiri, P., Sreenivasulu, N. (2022). Intriguing role of proline in redox potential conferring high temperature stress tolerance. Front. Plant Sci., 13, 867531. https://doi.org/10.3389/fpls.2022.867531 DOI: https://doi.org/10.3389/fpls.2022.867531
  23. Kučerová, K., Henselová, M., Slováková, Ľ., Hensel, K. (2019). Effects of plasma activated water on wheat: germination, growth parameters, photosynthetic pigments, soluble protein content, and antioxidant enzymes activity. Plasma Proc. Polym., 16, 1800131. https://doi.org/10.1002/ppap.201800131 DOI: https://doi.org/10.1002/ppap.201800131
  24. Kumar, D., Yusuf, M.A., Singh, P., Sardar, M., Sarin, N.B. (2014). Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio. Protoc., 4, e1108-e1108. DOI: https://doi.org/10.21769/BioProtoc.1108
  25. Li, F., Yuan, Y., Shimizu, N., Magaña, J., Gong, P., Na, R. (2023). Impact of organic fertilization by the digestate from by-product on growth, yield and fruit quality of tomato (Solanum lycopersicon) and soil properties under greenhouse and field conditions. Chem. Biol. Technol. Agric., 10, 70. https://doi.org/10.1186/s40538-023-00448-x DOI: https://doi.org/10.1186/s40538-023-00448-x
  26. Li, M., Ge, W., Shen, J., Liu, S. (2021a). Effect of adding rice husk ash to the cultivation substrate on the growth and fruit quality of Melon. Acta Bot. Boreal-Occident Sin., 41, 1736–1746. (In Chinese)
  27. Li, S., Deng, B., Tian, S., Guo, M., Liu, H., Zhao, X. (2021b). Metabolic and transcriptomic analyses reveal different metabolite biosynthesis profiles between leaf buds and mature leaves in Ziziphus jujuba mill. Food Chem., 347, 129005. https://doi.org/10.1016/j.foodchem.2021.129005 DOI: https://doi.org/10.1016/j.foodchem.2021.129005
  28. Li, Y., Li, X., Zhang, J., Li, D., Yan, L., You, M., Zhang, J., Lei, X., Chang, D., Ji, X. (2021c). Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to high temperature stress. Front. Plant Sci., 12, 753011. https://doi.org/10.3389/fpls.2021.753011 DOI: https://doi.org/10.3389/fpls.2021.753011
  29. Li, Y., Tian, X., Wei, M., Shi, Q., Yang, F., Wang, X. (2015). Mechanisms of tolerance differences in cucumber seedlings grafted on rootstocks with different tolerance to low temperature and weak light stresses. Turk. J. Bot., 39, 606–614. https://doi.org/10.3906/bot-1404-115 DOI: https://doi.org/10.3906/bot-1404-115
  30. Liu, H., Su, Y., Fan, Y., Zuo, D., Xu, J., Liu, Y., Mei, X., Huang, H., Yang, M., Zhu, S. (2023). Exogenous leucine alleviates heat stress and improves saponin synthesis in Panax notoginseng by improving antioxidant capacity and maintaining metabolic homeostasis. Front. Plant Sci., 14, 1175878. https://doi.org/10.3389/fpls.2023.1175878 DOI: https://doi.org/10.3389/fpls.2023.1175878
  31. Lo Presti, E., Badagliacca, G., Romeo, M., Monti, M. (2021). Does legume root exudation facilitate itself P uptake in intercropped wheat? J. Soil Sci. Plant Nutr., 21, 3269–3283. https://doi.org/10.1007/s42729-021-00605-x DOI: https://doi.org/10.1007/s42729-021-00605-x
  32. Lopez-Zaplana, A., Bárzana, G., Agudelo, A., Carvajal, M. (2020). Foliar mineral treatments for the reduction of melon (Cucumis melo L.) fruit cracking. Agronomy, 10, 1815. https://doi.org/10.3390/agronomy10111815 DOI: https://doi.org/10.3390/agronomy10111815
  33. Marasek-Ciolakowska, A., Góraj-Koniarska, J., Kowalska, U., Miyamoto, K., Ueda, J., Saniewski, M. (2019). Histological analysis of methyl jasmonate-induced gummosis in petiole of culinary rhubarb (Rheum rhabarbarum L.). Sci. Hortic., 254, 172–177. https://doi.org/10.1016/j.scienta.2019.05.001 DOI: https://doi.org/10.1016/j.scienta.2019.05.001
  34. Maresca, V., Sorbo, S., Keramat, B., Basile, A. (2017). Effects of triacontanol on ascorbate-glutathione cycle in Brassica napus L. exposed to cadmium-induced oxidative stress. Ecotoxicol. Environ. Saf., 144, 268–274. https://doi.org/10.1016/j.ecoenv.2017.06.035 DOI: https://doi.org/10.1016/j.ecoenv.2017.06.035
  35. Nerdy, N. (2018). Determination of vitamin C in various colours of bell pepper (Capsicum annuum L.) by Titration Method. Alchemy J. Pen. Kim., 14, 164–177. https://doi.org/10.20961/ALCHEMY.14.1.15738.164-178 DOI: https://doi.org/10.20961/alchemy.14.1.15738.188-202
  36. Oliveira, S.L., Crusciol, C.A.C., Rodrigues, V.A., Galeriani, T.M., Portugal, J.R., Bossolani, J.W., Moretti, L.G., Calonego, J.C., Cantarella, H. (2022). Molybdenum foliar fertilization improves photosynthetic metabolism and grain yields of field-grown soybean and maize. Front. Plant. Sci., 13, 887682. https://doi.org/10.3389/fpls.2022.887682 DOI: https://doi.org/10.3389/fpls.2022.887682
  37. Prie, B., Iosif, L., Tivig, I., Stoian, I., Giurcaneanu, C. (2016). Oxidative stress in androgenetic alopecia. J. Med. Life., 9, 79.
  38. Punia, S., Shah, A.M., Ranwha, B.R. (2011). Genetic analysis for high temperature tolerance in bread wheat. Afr. Crop. Sci. J. 19, 149–163
  39. Rihan, H.Z., Al-Issawi, M., Al, Shamari, M., Woldie, W.A., Kiernan, M., Fuller, M.P. (2014). The effect of molybdenum on the molecular control of cold tolerance in cauliflower (Brassica oleracea var. botrytis) artificial seeds. Plant Cell Tiss. Org. Cult. (PCTOC), 118, 215–228. https://doi.org/10.1007/s11240-014-0475-7 DOI: https://doi.org/10.1007/s11240-014-0475-7
  40. Said-Fernández, S., González-Garza, M.T, Mata-Cárdenas, B.D., Navarro-Marmolejo, L. (1990). A multipurpose solid-phase method for protein determination with Coomassie brilliant blue G-250. Anal Biochem., 191, 119–126. https://doi.org/10.1016/0003-2697(90)90397-R DOI: https://doi.org/10.1016/0003-2697(90)90397-R
  41. Sharma, I., Pati, P.K., Bhardwaj, R. (2011). Effect of 28-homobrassinolide on antioxidant defence system in Raphanus sativus L. under chromium toxicity. Ecotoxicology, 20, 862–874. https://doi.org/10.1007/s10646-011-0650-0 DOI: https://doi.org/10.1007/s10646-011-0650-0
  42. Slafer, G.A., Savin, R. (2018). Can N management affect the magnitude of yield loss due to heat waves in wheat and maize? Curr. Opin. Plant Biol., 45, 276–283. https://doi.org/10.1016/j.pbi.2018.07.009 DOI: https://doi.org/10.1016/j.pbi.2018.07.009
  43. Song, L., Yue, L., Zhao, H., Hou, M. (2013). Protection effect of nitric oxide on photosynthesis in rice under heat stress. Acta Physiol. Plant., 35, 3323–3333. https://doi.org/10.1007/s11738-013-1365-z DOI: https://doi.org/10.1007/s11738-013-1365-z
  44. Tao, Y., Nuerhailati, M., Zhang, Y.M., Zhang, J., Yin, B.F., Zhou, X.B. (2021). Influence of branch death on leaf nutrient status and stoichiometry of wild apple trees (Malus sieversii) in the western Tianshan Mountains, China. Pol. J. Ecol., 68, 296–312. https://doi.org/10.3161/15052249PJE2020.68.4.003 DOI: https://doi.org/10.3161/15052249PJE2020.68.4.003
  45. Wen, M., Yang S., Huo L., He P., Xu X., Wang C., Zhang Y., Zhou W. (2022) Estimating nutrient uptake requirements for melon based on the QUEFTS model. Agronomy, 12(1), 207. https://doi.org/10.3390/agronomy12010207 DOI: https://doi.org/10.3390/agronomy12010207
  46. Yang, X., Han, Y., Hao, J., Qin, X., Liu, C., Fan, S. (2022). Exogenous spermidine enhances the photosynthesis and ultrastructure of lettuce seedlings under high-temperature stress. Sci Hortic., 291, 110570. https://doi.org/10.1016/j.scienta.2021.110570 DOI: https://doi.org/10.1016/j.scienta.2021.110570
  47. Zafar, M.M., Zhang, Y., Farooq, M.A., Ali, A., Firdous, H., Haseeb, M., Fiaz, S., Shakeel, A., Razzaq, A., Ren, M. (2022). Biochemical and associated agronomic traits in Gossypium hirsutum L. under high temperature stress. Agronomy, 12, 1310. https://doi.org/10.3390/agronomy12061310 DOI: https://doi.org/10.3390/agronomy12061310
  48. Zhai, Z., Fang, Y., Cheng, J., Tian, Y., Liu, L., Cao, X. (2023). Intrinsic morphology and spatial distribution of non‐structural carbohydrates contribute to drought resistance of two mulberry cultivars. Plant Biol., 25(5), 771–784. https://doi.org/10.1111/plb.13533 DOI: https://doi.org/10.1111/plb.13533
  49. Zhao, H., Lyu, L., Lu, X., Guo, L., Zhu, Z., Wang, G. (2020). Analysis of photosynthetic characteristics of hybrid golden leaf ginkgo. J. Nanjing For. Univ., 44, 193. http://nldxb.njfu.edu.cn/EN/10.3969/j.issn.1000-2006.201809012

Downloads

Download data is not yet available.

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.