Abstract
The primary quality concern for spinach and other green vegetables during post-harvest handling is preserving the green color, specifically by delaying the yellowing caused by chlorophyll loss. The current study, therefore, aimed to investigate the effect of ethanol added to washing water in low concentrations on yellowing, chlorophyll loss, and the storage quality of spinach. For this purpose, ethanol was added to tap water at 0 µL L–1 (control), 200 µL L–1, 400 µL L–1, and 800 µL L–1, and after pre-washing, the spinach leaves were dipped in these solutions at a temperature of 16–18°C for five minutes. The spinach was stored at 4 ±1°C and at 90–95% RH for 21 days after being drained, dried, and packed, and the quality parameters were recorded at seven-day intervals. As a result of this study, the decline in chlorophyll losses was obtained especially by the application of the 400 µL L–1 ethanol treatment after the first 14 days of storage, and this result was positively correlated with both the color values L*, a*, b*, hue, yellowness index (YI), total color difference (ΔE), and the chlorophyll SPAD (soil-plant analysis development) values. Consequently, adding 400 µL L–1 of ethanol to the washing water was the most effective in delaying yellowing and chlorophyll loss in spinach. However, this effect declined with increasing solution concentrations and was accompanied by weight loss.
References
- Awad, A.H., Parmar, A., Ali, M.R., El-Mogy, M.M., Abdelgawa, K.F. (2021). Extending the shelf-life of fresh-cut green bean pods by ethanol, ascorbic acid, and essential oils. Foods 10, 1103. https://doi.org/10.3390/foods10051103
DOI: https://doi.org/10.3390/foods10051103
- Bandian, L., Neamati, H., Moghaddam, M. (2016). Effect of different N fertilization times on post-harvest quality of spinach (Spinacea oleracea L.). Int. J. Adv. Biotechnol. Res., 7, 235–243.
- Brummell, D.A., Toivonen, P.M. (2018). Postharvest physiology of vegetables. In: Siddiq, M., Uebersax, M.A. (eds), Handbook of vegetables and vegetable processing. John Wiley & Sons, 223–245. https://doi.org/10.1002/9781119098935.ch9
DOI: https://doi.org/10.1002/9781119098935.ch9
- Candir, E., Ozdemir, A.E., Kamiloglu, O., Soylu, E.M., Dilbaz, R., Ustun, D. (2012). Modified atmosphere packaging and ethanol vapor to control decay of ‘Red Globe’ table grapes during storage. Postharvest Biol. Technol. 63(1), 98–106. https://doi.org/10.1016/j.postharvbio.2011.09.008
DOI: https://doi.org/10.1016/j.postharvbio.2011.09.008
- Chakraborty, I., Chattopadhyay, A. (2018). Pre-and post-harvest losses in vegetables. In: Singh B., Singh S. (eds.), Advances in postharvest technologies of vegetable crops. CRC Press, Boca Raton, 1431(1), 25–87. https://doi.org/10.1201/9781315161020
DOI: https://doi.org/10.1201/9781315161020-2
- Chen, O.L., Lin, C., Kelkar, S.M., Chang, Y., Shaw, J. (2008). Transgenic broccoli (Brassica oleracea var. italica) with antisense chlorophyllase (BoCLH1) delays postharvest yellowing. Plant Sci., 174, 25–31. https://doi.org/10.1016/j.plantsci.2007.09.006
DOI: https://doi.org/10.1016/j.plantsci.2007.09.006
- Chen, J., Jin, Z., Xiang, L., Chen, Y., Zhang, J., Zhao, J., Huang, F., Shi, Y., Cheng, F., Pan, G. (2023). Ethanol sup-presses rice seed germination through inhibiting ROS signaling. J. Plant Physiol., 291, 154123. https://doi.org/10.1016/j.jplph.2023.154123
DOI: https://doi.org/10.1016/j.jplph.2023.154123
- de França, D.L.B., Braga, G.C., Laureth, J.C.U., Dranski, J.A.L., de Andrade Moura, C. (2019). Physiological re-sponse, antioxidant enzyme activities and conservation of banana treated with ethanol vapor. J. Food Sci., 56, 208–216. https://doi.org/10.1007/s13197-018-3476-4
DOI: https://doi.org/10.1007/s13197-018-3476-4
- Dorostkar, M., Moradinezhad, F. (2022). Postharvest quality responses of pomegranate fruit (cv. Shishe-kab) to ethanol, sodium bicarbonate dips and modified atmosphere packaging. Adv. Hortic. Sci., 36(2), 107–117. https://doi.org/10.36253/ahsc¬12041
DOI: https://doi.org/10.36253/ahsc-12041
- Fukasawa, A., Suzuki, Y., Terai, H., Yamauchi, N. (2010). Effects of postharvest ethanol vapor treatment on activi-ties and gene expression of chlorophyll catabolic enzymes in broccoli florets. Postharvest Biol. Technol., 55, 97–102. https://doi.org/10.1016/j.postharvbio.2009.08.010
DOI: https://doi.org/10.1016/j.postharvbio.2009.08.010
- Gondi, M., Prasada Rao, U.J.S. (2015). Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats. J. Food Sci. Tech., 52, 7883–7893. https://doi.org/10.1007/s13197-015-1963-4
DOI: https://doi.org/10.1007/s13197-015-1963-4
- Grozeff, G.E.G., Chaves, A.R., Bartoli, C.G. (2013). Low irradiance pulses improve postharvest quality of spinach leaves (Spinacia oleraceae L. cv. Bison). Postharvest Biol. Technol., 77, 35–42. https://doi.org/10.1016/j.postharvbio.2012.10.012
DOI: https://doi.org/10.1016/j.postharvbio.2012.10.012
- Hirschler, R. (2012). Whiteness, yellowness, and browning in food colorimetry. In: Caivano, J.L., Buera, M.P. (eds), Color in food: technological and psychophysical aspects. CRC press, Taylor and Francis Group, pp. 93–104. https://doi.org/10.1201/b11878-13
DOI: https://doi.org/10.1201/b11878-13
- Hodges, D.M., Toivonen, P.M. (2008). Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress. Postharvest Biol. Technol., 48, 155–162. https://doi.org/10.1016/j.postharvbio.2007.10.016
DOI: https://doi.org/10.1016/j.postharvbio.2007.10.016
- Ji, Y., Hu, W., Liao, J., Xiu, Z., Jiang, A., Guan, Y., Yang, X., Feng, K. (2021). Ethanol vapor delays softening of postharvest blueberry by retarding cell wall degradation during cold storage and shelf life. Postharvest Biol. Technol., 177, 111538. https://doi.org/10.1016/j.postharvbio.2021.111538
DOI: https://doi.org/10.1016/j.postharvbio.2021.111538
- Jin, Y.Z., Liu, W.W., Qi, H.Y., Bai, X.H. (2013). Ethanol vapor treatment maintains postharvest storage quality and inhibits internal ethylene biosynthesis during storage of oriental sweet melons. Postharvest Biol. Technol., 86, 372–380. https://doi.org/10.1016/j.postharvbio.2013.07.019
DOI: https://doi.org/10.1016/j.postharvbio.2013.07.019
- Kanlayanarat, S. (2009). Postharvest technologies for fresh leafy vegetables in Thailand. In: Aceco Jr., A.L, Wein-berger, A. (eds), Best practices in postharvest management of leafy vegetables in Greater Mekong Subregion countries. Proceedings of a GMS workshop 25–27 October 2007, Hanoi, Vietnam. AVRDC Publication No. 09-731. The World Vegetable Centre, Taiwan, 44–52.
- Kasım, M.U., Kasım, R. (2017). Yellowing of fresh-cut spinach (Spinacia oleracea L.) leaves delayed by UV-B applications. Inf. Proc. Agric., 4(3), 214–219. https://doi.org/10.1016/j.inpa.2017.05.006
DOI: https://doi.org/10.1016/j.inpa.2017.05.006
- Kaur, P., Rai, D.R., Paul, S. (2011). Quality changes in fresh-cut spinach (Spinacia oleracea) under modified at-mospheres with perforations. J. Food Qual., 34, 10–18. https://doi.org/10.1111/j.1745-4557.2010.00361.x
DOI: https://doi.org/10.1111/j.1745-4557.2010.00361.x
- Khanna-Chopra, R. (2012). Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloro-plast degradation. Protoplasma, 249, 469–481. https://doi.org/10.1007/s00709-011-0308-z
DOI: https://doi.org/10.1007/s00709-011-0308-z
- Koh, E., Charoenprasert, S., Mitchell, A.E. (2012), Effect of organic and conventional cropping systems on ascorbic acid, vitamin C, flavonoids, nitrate, and oxalate in 27 varieties of spinach (Spinacia oleracea L.). J. Agric. Food Chem., 60, 3144–3150. https://doi.org/10.1021/jf300051f
DOI: https://doi.org/10.1021/jf300051f
- Koike, T., Cahn, M., Cantwell, M., Fennimore, S., Lestrange, M., Natwick, E., Smith, R.F., Takele, E. (2011). Spinach production in California. University of California, Agriculture and Natural Resources, Davis, CA. https://doi.org/10.3733/ucanr.7212
DOI: https://doi.org/10.3733/ucanr.7212
- Konica Minolta. (2023). Precise color communication. Part I. Color difference. Available at: https://www.konicaminolta.com/instruments/knowledge/color/ [accessed: 20 June 2023].
- Lin, X., Wang, L., Hou, Y., Zheng, Y., Jin, P. (2020). A combination of melatonin and ethanol treatment improves postharvest quality in bitter melon fruit. Foods, 9, 1376. https://doi.org/10.3390/foods9101376
DOI: https://doi.org/10.3390/foods9101376
- Liu, G., Li, B., Wang, Y., Wei, B., He, C., Liu, D., Shi, H. (2019a). Novel role of ethanol in delaying postharvest phys-iological deterioration and keeping quality in cassava. Food Bioproc. Tech., 12, 1756–1765. https://doi.org/10.1007/s11947-019-02330-x
DOI: https://doi.org/10.1007/s11947-019-02330-x
- Liu, H., Meng, F., Chen, S., Yin, T., Hu, S., Shao, Z., Liu, Y., Zhu, C., Ye, H., Wang, Q. (2019b). Ethanol treatment improves the sensory quality of cherry tomatoes stored at room temperature. Food Chem., 298, 125069. https://doi.org/10.1016/j.foodchem.2019.125069
DOI: https://doi.org/10.1016/j.foodchem.2019.125069
- Lloyd, J.R., Kötting, O. (2016). Starch biosynthesis and degradation in plants. eLS. Hoboken, Wiley, 1–10. https://doi.org/10.1002/9780470015902.a0020124
DOI: https://doi.org/10.1002/9780470015902.a0020124.pub2
- Martínez-Sánchez, A., Lozano-Pastor, P., Artés-Hernández, F., Artés, F., Aguayo, E. (2019). Preharvest UV-C treatment improves the quality of spinach primary production and postharvest storage. Postharvest Biol. Tech-nol., 155, 130–139. https://doi.org/10.1016/j.postharvbio.2019.05.021
DOI: https://doi.org/10.1016/j.postharvbio.2019.05.021
- Morelock, T.E., Correll, J.C. (2008). Spinach. In: Prohens, J., Nuez, F, (eds), Vegetables I. Springer, New York, pp. 189–218. https://doi.org/10.1007/978-0-387-30443-4_6
DOI: https://doi.org/10.1007/978-0-387-30443-4_6
- Mori, T., Terai, H., Yamauchi, N., Suzuki, Y. (2009). Effects of postharvest ethanol vapor treatment on the ascor-bate-glutathione cycle in broccoli florets. Postharvest Biol. Technol., 52, 134–136. https://doi.org/10.1016/j.postharvbio.2008.10.001
DOI: https://doi.org/10.1016/j.postharvbio.2008.10.001
- Murcia, M.A., Jiménez-Monreal, A.M., Gonzalez, J., Martínez-Tomé, M. (2020). Spinach. In: Jaiswal, A.K., Nutri-tional composition and antioxidant properties of fruits and vegetables. Academic Press, pp. 181–195. https://doi.org/10.1016/B978-0-12-812780-3.00011-8
DOI: https://doi.org/10.1016/B978-0-12-812780-3.00011-8
- Noma, Y., Suzuki, Y., Terai, H., Yamauchi, N. (2009). Effects of postharvest ethanol vapor treatment on quality of sudachi (Citrus sudachi Hort. ex. Shirai) fruit. Food Preserv. Sci., 35, 187–193.
DOI: https://doi.org/10.5891/jafps.35.187
- Ni, Z., Kim, E.D., Chen, J. (2009). Scientific protocols, chlorophyll and starch assays. Chen Lab (The University of Texas at Austin), 2677. https://doi.org/10.1038/nprot.2009.12
DOI: https://doi.org/10.1038/nprot.2009.12
- Nguyen, H.M., Sako, K., Matsui, A., Suzuki, Y., Mostofa, M.G., Ha, C.V., Tanaka, M., Tran, L-S.P., Habu, Y., Seki, M. (2017). Ethanol enhances high-salinity stress tolerance by detoxifying reactive oxygen species in Arabidopsis thaliana and rice. Front Plant Sci., 8, 1001. https://doi.org/10.3389/fpls.2017.01001
DOI: https://doi.org/10.3389/fpls.2017.01001
- Opio, P., Pongphen, J., Pongprasert, N., Wongs-Aree, C., Suzuki, Y., Srilaong, V. (2015). Postharvest ethanol vapor treatment delays chlorophyll degradation and maintains quality of Thai lime (Citrus aurantifolia Swingle cv. Paan) fruit. Agric. Sci. J., 46(3), Suppl., 173–176.
- Papachristodoulou, M., Koukounaras, A., Siomos, A.S., Liakou, A., Gerasopoulos, D. (2018). The effects of ozonat-ed water on the microbial counts and the shelf life attributes of fresh‐cut spinach. J. Food Proc. Preserv., 42(1), e13404. https://doi.org/10.1111/jfpp.13404
DOI: https://doi.org/10.1111/jfpp.13404
- Pesis, E. (2005). The role of anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biol. Technol., 37, 1–19. https://doi.org/10.1016/j.postharvbio.2005.03.001
DOI: https://doi.org/10.1016/j.postharvbio.2005.03.001
- Pun, U.K., Yamada, T., Tanase, K., Shimizu-Yumoto, H., Satoh, S., Ichimura, K. (2014). Effect of ethanol on eth-ylene biosynthesis and sensitivity in cut carnation flowers. Postharvest Biol. Technol., 98, 30–33. https://doi.org/10.1016/j.postharvbio.2014.06.018
DOI: https://doi.org/10.1016/j.postharvbio.2014.06.018
- Roberts, J.L., Moreau, R. (2016). Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bio-actives. Food Funct., 7, 3337–3353. https://doi.org/10.1039/C6FO00051G
DOI: https://doi.org/10.1039/C6FO00051G
- Romero, I., Vazquez-Hernandez, M., Tornel, M., Escribano, M.I., Merodio, C., Sanchez-Ballesta, M.T. (2021). The effect of ethanol treatment on the quality of a new table grape cultivar It 681–30 stored at low temperature and after a 7-day shelf-life period at 20°C: a molecular approach. Int. J. Mol. Sci., 22(15), 8138. https://doi.org/10.3390/ijms22158138
DOI: https://doi.org/10.3390/ijms22158138
- Sahoo, S.K., Tomar, M.S., Pradhan, R.C. (2021). Disinfecting agents for controlling fruits and vegetable diseases after harvest. In: Galanakis, C.M. (eds), Food losses, sustainable postharvest and food technologies. Academic Press, pp. 103–151. https://doi.org/10.1016/B978-0-12-821912-6.00007-9
DOI: https://doi.org/10.1016/B978-0-12-821912-6.00007-9
- Sako, K., Nagashima, R., Tamoi, M., Seki, M. (2021). Exogenous ethanol treatment alleviates oxidative damage of Arabidopsis thaliana under conditions of high-light stress. Plant Biotechnol., 38(3), 339–344. https://doi.org/10.5511/plantbiotechnology.21.0715a
DOI: https://doi.org/10.5511/plantbiotechnology.21.0715a
- Shashirekha, M.N., Mallikarjuna, S.E., Rajarathnam, S. (2015). Status of bioactive compounds in foods, with focus on fruits and vegetables. Crit. Rev. Food Sci. Nutr., 55, 1324–1339. https://doi.org/10.1080/10408398.2012.692736
DOI: https://doi.org/10.1080/10408398.2012.692736
- Suzuki, Y., Uji, T., Terai, H. (2004). Inhibition of senescence in broccoli florets with ethanol vapor from alcohol powder. Postharvest Biol. Technol., 31, 177–182. https://doi.org/10.1016/j.postharvbio.2003.08.002
DOI: https://doi.org/10.1016/j.postharvbio.2003.08.002
- Suzuki, Y., Nagata, Y. (2019). Postharvest ethanol vapor treatment of tomato fruit stimulates gene expression of ethylene biosynthetic enzymes and ripening related transcription factors, although it suppresses ripening. Post-harvest Biol. Technol., 152, 118–126. https://doi.org/10.1016/j.postharvbio.2019.03.006
DOI: https://doi.org/10.1016/j.postharvbio.2019.03.006
- Thewes, F.R., Balkees, B.M., Büchele, F., Wünsche, J.N., Neuwald, D.A., Brackmann, A. (2021). Ethanol vapor treatment inhibits apple ripening at room temperature even with the presence of ethylene. Postharvest Biol. Technol., 173, 111415. https://doi.org/10.1016/j.postharvbio.2020.111415
DOI: https://doi.org/10.1016/j.postharvbio.2020.111415
- Xu, F., Chen, X., Jin, P., Wang, X., Wang, J., Zheng, Y. (2012). Effect of ethanol treatment on quality and antioxi-dant activity in postharvest broccoli florets. Eur. Food Res. Technol., 235, 793–800. https://doi.org/10.1007/s00217-012-1808-6
DOI: https://doi.org/10.1007/s00217-012-1808-6
- Xu, Y., Bao, Y., Chen, J., Yi, Y., Ai, Y., Hou, W., Wang L. Wang H., Min, T. (2023). Mechanisms of ethanol treat-ment on controlling browning in fresh-cut lotus roots. Sci. Hortic., 310, 111708. https://doi.org/10.1016/j.scienta.2022.111708
DOI: https://doi.org/10.1016/j.scienta.2022.111708
- Wang, K., Jin, P., Tang, S., Shang, H., Rui, H., Di, H., Cai, Y., Zheng, Y. (2011). Improved control of postharvest decay in Chinese bayberries by a combination treatment of ethanol vapor with hot air. Food Control, 22, 82–87. https://doi.org/10.1016/j.foodcont.2010.05.011
DOI: https://doi.org/10.1016/j.foodcont.2010.05.011
- Wang, Q., Nie, X., Cantwell, M. (2014). Hot water and ethanol treatment can effectively inhibit the discoloration of fresh-cut sunchoke (Helianthus tuberosus L.) tubers. Postharvest Biol. Technol., 94, 49–57. https://doi.org/10.1016/j.postharvbio.2014.03.003
DOI: https://doi.org/10.1016/j.postharvbio.2014.03.003
- Yamauchi, N. (2015). Postharvest chlorophyll degradation and oxidative stress. In: Kanayama, Y., Kochetov, A. (eds) Abiotic stress biology in horticultural plants. Springer, Tokyo, pp. 101–113. https://doi.org/10.1007/978-4-431-55251-2_8
DOI: https://doi.org/10.1007/978-4-431-55251-2_8
- Yan, S., Luo, Y., Zhou, B., Ingram, D.T. (2017). Dual effectiveness of ascorbic acid and ethanol combined treat-ment to inhibit browning and inactivate pathogens on fresh-cut apples. LWT Food Sci. Technol., 80, 311–320. https://doi.org/10.1016/j.lwt.2017.02.021
DOI: https://doi.org/10.1016/j.lwt.2017.02.021
- Zhu, X., Chen, J., Qiu, K., Kuai, B. (2017). Phytohormone and light regulation of chlorophyll degradation. Front. Plant Sci., 8, 1911.
DOI: https://doi.org/10.3389/fpls.2017.01911
Downloads
Download data is not yet available.
-
Elżbieta Mielniczuk,
Małgorzata Cegiełko,
FUNGI OCCURRED ON MARIGOLD (Tagetes L.) AND HARMFULNESS OF Fusarium SPECIES TO SELECTED CULTIVARS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 2 (2019)
-
Mirjana Momir Radović,
Dragan P. Milatović,
Gordan N. Zec,
Đorđe D. Boškov,
The influence of four rootstocks on the growth, yield and fruit quality of two plum cultivars
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 4 (2022)
-
Monika Poniewozik,
Paweł Szot,
Marzena Parzymies,
TISSUE CULTURE MULTIPLICATION OF Paphiopedilum insigne DEPENDING ON THE MEDIUM TYPE, GROWTH REGULATORS AND NATURAL SUPPLEMENTS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 4 (2021)
-
Min Xiong,
Shuai Yang,
Yi Wang,
Defeng Chen,
Xian Wang,
Di Zhou,
Zunzheng Wei,
GENETIC ANALYSIS OF 38 DOUBLE-FLOWERED AMARYLLIS (Hippeastrum hybridum) CULTIVARS BASED ON SRAP MARKERS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 3 (2021)
-
Betül Tan,
Emrah Kuş,
Kadir Tan,
Ersin Gülsoy,
Duried Alwazeer,
Determination of optimum harvest time and physical and chemical quality properties of Shalakh (Aprikoz) apricot cultivar during fruit ripening
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 22 No. 1 (2023)
-
Katarzyna Dzida,
Zenia Michałojć,
Zbigniew Jarosz,
Karolina Pitura,
Natalia Skubij,
EFFECT OF POTASSIUM FERTILIZATION ON YIELD, GROWTH AND CHEMICAL COMPOSITION OF BASIL HERB
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 6 (2018)
-
Marta Joanna Monder,
Jerzy Hetman,
THE INFLUENCE OF THE THICKNESS OF ROOTSTOCK AND SCIONS ON THE GROWTH AND QUALITY OF THE OBTAINED SHRUBS OF TWO Rosa × hybrida CULTIVARS. PART II. THE QUALITY OF SHRUBS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 10 No. 1 (2011)
-
Hüseyin Karlidağ,
Metin Turan,
Fırat Ege Karaat,
Ekrem Ozlu,
Francisco Arriaga,
Tuncay Kan,
Salih Atay,
RESPONSE OF HEAVY METAL CONTENTS IN APRICOTS TO DIFFERENT TRANSPORTATION MODES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 1 (2019)
-
Saied Kamel Mohamed Abd El-Naby,
Amr Abdelkhalek Ahmed Mohamed,
Yahia Ibrahim Mohamed El-Naggar,
EFFECT OF MELATONIN, GA3 AND NAA ON VEGETATIVE GROWTH, YIELD AND QUALITY OF ‘CANINO’ APRICOT FRUITS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 3 (2019)
-
Waldemar Buchwald,
Romuald Mordalski,
Hanna Zalińska,
Wojciech A. Kucharski,
Elżbieta Bilińska,
EFFECT OF FERTILIZATION AND PLANT SPACING ON YIELD AND CONTENT OF FLAVONOIDS IN FIREWEED HERB (Epilobii herba)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 3 (2021)
<< < 27 28 29 30 31 32 33 34 35 36 > >>
You may also start an advanced similarity search for this article.