Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 5 (2023)

Articles

The influence of biostimulants on the rhizospheric microorganisms of scorzonera (Scorzonera hispanica L.)

DOI: https://doi.org/10.24326/asphc.2023.5056
Submitted: January 31, 2023
Published: 2023-10-30

Abstract

Scorzonera (Scorzonera hispanica L.) is a particularly valuable species among little-known and rarely cultivated vegetables. It is a root vegetable of high dietary and nutritional values. The suitable microbiological activity of the soil favors the growth and development of scorzonera. Biostimulants can positively affect the communities of rhizospheric microorganisms of cultivated plants, including this important vegetable. The studies established the influence of biostimulants on the microbial communities in the scorzonera rhizosphere. Before setting up the field experiment, scorzonera seeds were dressed with fungicide Zaprawa Nasienna T 75 DS/WS or biostimulants Beta-Chikol, Bio-Algeen S-90, and Asahi SL. The laboratory microbiological analyses of scorzonera rhizosphere soil were conducted and determined the total population of bacteria and fungi. The obtained rhizosphere isolates of fungi Albifimbria, Clonostachys, Epicoccum, Penicillium, and Trichoderma sp. were tested to check the influence on fungi pathogenic to scorzonera (Fusarium culmorum, Fusarium oxysporum, Sclerotinia sclerotiorum, and Rhizoctonia solani). The experiments showed that biostimulants, especially Asahi SL and Beta-Chikol, favored the development of rhizobacteria populations (including Bacillus sp. and Pseudomonas sp.). All biostimulants (Beta-Chikol, in particular) and the fungicide decreased the population of rhizospheric fungi and limited the occurrence of polyphagous fungi in the rhizosphere of scorzonera. Biostimulant Beta-Chikol and fungicide Zaprawa Nasienna T 75 DS/WS were most effective in stimulating the development of antagonistic fungi. Clonostachys rosea, Trichoderma sp., and Albifimbria verrucaria predominated as antagonistic rhizospheric fungi.

References

  1. Abbo, A.S., Idris, M.O., Hammad, A.M. (2014). The antifungal effects of four tomato rhizosphere Bacillus spp. against Alternaria alternata. Inter. J. Sci. Res., 3(7), 1324–1328.
  2. Balasubramanian, V., Vashisht, D., Cletus, J., Sakthivel, N. (2012). Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett., 34, 1983–1990. https://doi.org/10.1007/s10529-012-1012-6 DOI: https://doi.org/10.1007/s10529-012-1012-6
  3. Brito, J.P.C., Ramada, M.H.S., de Magalhães, M.T.Q., Silva, L.P., Ulhoa, C.J. (2014). Peptaibols from Trichoderma asperellum TR356 strain isolated from Brazilian soil. SpringerPlus, 3, 1–10. https://doi.org/10.1186/2193-1801-3-600 DOI: https://doi.org/10.1186/2193-1801-3-600
  4. Chandrasekaran, M., Belachew, S.T., Yoon, E., Chun, S.C. (2017). Expression of β-1,3-glucanase (GLU) and phenylalanine ammonia-lyase (PAL) genes and their enzymes in tomato plants induced after treatment with Bacillus subtilis CBR05 against Xanthomonas campestris pv. vesicatoria. J. Gen. Plant Pathol., 83, 7–13. https://doi.org/10.1007/s10327-016-0692-5 DOI: https://doi.org/10.1007/s10327-016-0692-5
  5. Colla, G., Rouphael, Y., Di Mattia, E., El-Nakhel, C., Cardarelli, M. (2015). Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. J. Sci. Food Agric., 95(8), 1706–1715. https://doi.org/10.1002/jsfa.6875 DOI: https://doi.org/10.1002/jsfa.6875
  6. de La Cruz, J., Hidalgo-Gallego, A., Lora, J.M., Benitez, T., Pintor-Toro, J.A., Llobell, A. (1992). Isolation and characterization of three chitinases from Trichoderma harzianum. Eur. J. Biochem., 206(3), 859–867. https://doi.org/10.1111/j.1432-1033.1992.tb16994.x DOI: https://doi.org/10.1111/j.1432-1033.1992.tb16994.x
  7. Dolota, A., Dąbrowska, B. (2004). Raw fibre and inulin content in roots of different scorzonera cultivars (Scorzonera hispanica L.) depending on cultivation method. Folia Hortic., 16(1), 31–37.
  8. Drobek, M., Frąc, M., Cybulska, J. (2019). Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress – a review. Agronomy, 9(6), 335. https://doi.org/10.3390/agronomy9060335 DOI: https://doi.org/10.3390/agronomy9060335
  9. du Jardin, P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Sci. Horticult., 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021 DOI: https://doi.org/10.1016/j.scienta.2015.09.021
  10. El Hadrami, A., Adam, A.R., El Hadrami, I., Daayf, F. (2010). Chitosan in plant protection. Mar. Drugs, 8(4), 968–987. https://doi.org/10.3390/md8040968 DOI: https://doi.org/10.3390/md8040968
  11. Gaiero, J.R., McCall, C.A., Thompson, K.A., Day, N.J., Best, A.S., Dunfield, K.E. (2013). Inside the root microbiome: bacterial root endophytes and plant growth promotion. Americ. J. Bot., 100(9), 1738–1750. https://doi.org/10.3732/ajb.1200572 DOI: https://doi.org/10.3732/ajb.1200572
  12. Głosek-Sobieraj, M., Cwalina-Ambroziak, B., Waśkiewicz, A., Hamouz, K., Perczak, A. (2019). The effect of biostimulants on the health status and content of chlorogenic acids in potato tubers (Solanum tuberosum L.) with colored flesh. Gesunde Pflan., 71, 45–60. https://doi.org/10.1007/s10343-018-00441-7 DOI: https://doi.org/10.1007/s10343-018-00441-7
  13. Grant, M.R., Jones, J.D.G. (2009). Perspective hormone (Dis) harmony moulds plant health and disease. Science, 324(5928), 750–752. https://doi.org/10.1126/science.1173771 DOI: https://doi.org/10.1126/science.1173771
  14. Gveroska, B., Ziberoski, J. (2012). Trichoderma harzianum as a biocontrol agent against Alternaria alternata on tobacco. Appl. Tech. Innov., 7, 67–76. https://doi.org/10.15208/ati.2012.9 DOI: https://doi.org/10.15208/ati.2012.9
  15. Horoszkiewicz-Janka, J., Jajor, E. (2006). Wpływ zaprawiania nasion na zdrowotność jęczmienia, pszenicy i rzepaku we wczesnych fazach rozwojowych [The effect of seed dressing on healthiness of barley, wheat and rape in early development stages]. J. Res. Appl. Agric. Eng., 51(2), 47–53. In Polish.
  16. Horoszkiewicz-Janka, J., Michalski, T. (2006). Wpływ zabiegów ochronnych na pulchność ziarna, zdolność kiełkowania i skład specyficzny grzybów wyizolowanych z ziarna jęczmienia i owsa. [The effect of protective treatments on plumpness of grain, germinating capacity and specific composition of fungi isolated from grain of barley and oat]. Prog. Plant Prot., 46(1), 417–423. [In Polish].
  17. Jamiołkowska, A. (2020). Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. Agronomy, 10, 173, https://doi.org/10.3390/agronomy10020173 DOI: https://doi.org/10.3390/agronomy10020173
  18. Jaulneau, V., Lafitte. C., Corio-Costet, M.F., Stadnik, M.J., Salamagne, S., Briand, X., Esquerré-Tugayé, M.T., Dumas, B. (2011). An Ulva armoricana extract protects plants against three powdery mildew pathogens. Eur. J. Plant Pathol., 131, 393–401. https://doi.org/10.1007/s10658-011-9816-0 DOI: https://doi.org/10.1007/s10658-011-9816-0
  19. Kaur, N., Gupta, A.K. (2002). Applications of inulin and oligofructose in health and nutrition. J. Biosci., 27, 703–714. https://doi.org/10.1007/BF02708379 DOI: https://doi.org/10.1007/BF02708379
  20. Konopiński, M. (2003). Wpływ zróżnicowanych systemów uprawy na kształtowanie warunków wzrostu, plonowanie i wartość biologiczną skorzonery (Scorzonera hispanica L.) [Effect of differentiated cultivation systems on the formation of growth conditions, yield and biological value of scorzonera (Scorzonera hispanica L.)]. Rozpr. Nauk. AR Lublin, 271, 93. In Polish.
  21. Leslie, J.F., Summerell, B.A. (2006). The Fusarium laboratory manual. Blackwell Publishing Professional, Ames, Iowa, USA. DOI: https://doi.org/10.1002/9780470278376
  22. Ma, G.Z., Gao, H.N., Zhang, Y.H., Li, S.D., Xie, S.D., Wu, S.J. (2012). Purification and characterization of chitinase from Gliocladium catenulatum strain HL-1-1. Afr. J. Microbiol. Res., 6, 4377–4383. https://doi.org/10.5897/AJMR12.605 DOI: https://doi.org/10.5897/AJMR12.605
  23. Malik, A., Mor, V.S., Tokas, J., Punia, H., Malik, S., Malik, K., Sangwan, S., Tomar, S., Singh, P., Singh, N., Himangini, Vikram, Nidhi, Singh, G., Vikram, Kumar, V. Sandhya, Karwasra, A. (2021). Biostimulant-treated seedlings under sustainable agriculture: a global perspective facing climate change. Agronomy, 11(1), 14. https://doi.org/10.3390/agronomy11010014 DOI: https://doi.org/10.3390/agronomy11010014
  24. Mańka, K. Mańka, M. (1992). A new method for evaluating interaction between soil inhibiting fungi and plant pathogen. Bull. OILB/SROP, XV, 73–77.
  25. Mańka, K., Kowalski, S. (1968). The effect of communities of soil-borne fungi from two forest nurseries (pine and ash) on the development of necrotic fungus Fusarium oxysporum Schl.). Poznań Soc. Friends Sci., 25, 197–205.
  26. Masi, M., Nocera, P., Reveglia, P., Cimmino, A., Evidente, A. (2018). Fungal metabolites antagonists towards plant pests and human pathogens: structure-activity relationship studies. Molecules, 23(4), 834. https://doi.org/10.3390/molecules23040834 DOI: https://doi.org/10.3390/molecules23040834
  27. Mukherjee, P.K., Horwitz, B.A., Herrera-Estrella, A., Schmoll, M., Kenerley, C.M. (2013). Trichoderma research in the genome era. Annu. Rev. Phytopathol., 51, 105–129. https://doi.org/10.1146/annurev-phyto-082712-102353 DOI: https://doi.org/10.1146/annurev-phyto-082712-102353
  28. Patkowska, E. (2020). Soil-borne microorganisms threatening carrot cultivated with the use of cover crops. Acta Sci. Pol. Hortorum Cultus, 19(4), 71–86. https://doi.org/10.24326/asphc.2020.4.7 DOI: https://doi.org/10.24326/asphc.2020.4.7
  29. Patkowska, E. (2021). Biostimulants managed fungal phytopathogens and enhanced activity of beneficial microorganisms in rhizosphere of scorzonera (Scorzonera hispanica L.). Agriculture, 11(4), 347. https://doi.org/10.3390/agriculture11040347 DOI: https://doi.org/10.3390/agriculture11040347
  30. Patkowska, E., Jamiołkowska, A., Mielniczuk, E., Skwaryło-Bednarz, B. (2022). Biodiversity of fungi colonizing scorzonera (Scorzonera hispanica L.) cultivated with the use of biostimulants. Acta Sci. Pol. Hortorum Cultus, 21(3), 99–111. https://doi.org/10.24326/asphc.2022.3.9 DOI: https://doi.org/10.24326/asphc.2022.3.9
  31. Patkowska, E., Mielniczuk, E., Jamiołkowska, A., Skwaryło-Bednarz, B., Błażewicz-Woźniak, M. (2020). The influence of Trichoderma harzianum Rifai T-22 and other biostimulants on rhizosphere beneficial microorganisms of carrot. Agronomy, 10(11), 1637. https://doi.org/10.3390/agronomy10111637 DOI: https://doi.org/10.3390/agronomy10111637
  32. Paulert, R., Ebbinghaus, D., Urlass, C., Moerschbacher, M. (2010). Priming of the oxidative burst in rice and wheat cell cultures by ulvan, a polysaccharide from green macroalgae, and enhanced resistance against powdery mildew in wheat and barley plants. Plant Pathol., 59(4), 634–642. https://doi.org/10.1111/j.1365-3059.2010.02300.x DOI: https://doi.org/10.1111/j.1365-3059.2010.02300.x
  33. Paulert, R., Talamini, V., Cassolato, J.E.F., Duarte, M.E.R., Noseda, M.D., Smania, A., Stadnik, M.J. (2009). Effects of sulphated polysaccharide and alcoholic extracts from green seaweeds Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.). J. Plant Dis. Prot., 116, 263–270. https://doi.org/10.1007/BF03356321 DOI: https://doi.org/10.1007/BF03356321
  34. Ramirez, C. (1982). Manual and atlas of the Penicillia. Elsevier Biomedical Press, Amsterdam–New York–Oxford. Roberfroid, M.B. (2002). Functional foods: concepts and application to inulin and oligofructose. British J. Nutr., 87, S139–S143. https://doi.org/10.1079/bjnbjn/2002529 DOI: https://doi.org/10.1079/BJN/2002529
  35. Roberti, R., Bergonzoni, F., Finestrelli, A., Leonardi, P. (2015). Biocontrol of Rhizoctonia solani disease and biostimulant effect by microbial products on bean plants. Micologia Italiana, 44, 49–61. https://doi.org/10.6092/issn.2465-311X/5742
  36. Selitrennikoff, C.P. (2001). Antifungal proteins. Appl. Environ. Microbiol., 67(7), 2883–2894. DOI: https://doi.org/10.1128/AEM.67.7.2883-2894.2001
  37. Shahrajabian, M.H., Chaski, C., Polyzos, N., Petropoulos, S.A. (2021). Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules, 11(5), 698. https://doi.org/10.3390/biom11050698 DOI: https://doi.org/10.3390/biom11050698
  38. Smolińska, U., Kowalska, B. (2018). Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum – a review. J. Plant Pathol., 100, 1–12. https://doi.org/10.1007/s42161-018-0023-0 DOI: https://doi.org/10.1007/s42161-018-0023-0
  39. Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M.S., Ramakrishnan, M., Landi, M., Araniti, F., Sharma, A. (2020). Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants, 9(6), 762. https://doi.org/10.3390/plants9060762 DOI: https://doi.org/10.3390/plants9060762
  40. Sosnowski, J., Truba, M., Redzik, P., Toczyska, E. (2020). The effect of growth regulator Tytanit dose on Medicago × varia T. Martin and Trifolium pratense L. yield and nutritional value. Saudi J. Biol. Sci. 27(11), 2890–2901. https://doi.org/10.1016/j.sjbs.2020.09.013 DOI: https://doi.org/10.1016/j.sjbs.2020.09.013
  41. Walters, D., Newton, A., Lyon, G. (2007). Induced resistance for plant defense: a sustainable approach to crop protection. Blackwell Publishing, Oxford, UK, pp. 258. DOI: https://doi.org/10.1002/9780470995983
  42. Xing, K., Zhu, X., Peng, X., Qin, S. (2015). Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron. Sustain. Dev., 35, 569–588. https://doi.org/10.1007/s13593-014-0252-3 DOI: https://doi.org/10.1007/s13593-014-0252-3
  43. Zarzycki K., Szeląg Z. (2006). Red list of vascular plants in Poland. In: Z. Mirek, K. Zarzycki, W. Wojewoda, Z. Szeląg, W. Szafer (eds), Red list of plants and fungi in Poland. Institute of Botany, Polish Academy of Science, Kraków, 9–20.
  44. Zhao, D., Zhao, H., Zhao, D., Zhu, X., Wang, Y., Duan, Y., Xuan, Y., Chen, L. (2018). Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biol. Control, 119, 12–19. https://doi.org/10.1016/j.biocontrol.2018.01.004 DOI: https://doi.org/10.1016/j.biocontrol.2018.01.004

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.