Abstract
Drought and salinity are the most important abiotic factors limiting agricultural production. One of the effective ways to avoid their negative effects on plants is to determine the genotypes that will show resistance to these stress conditions. In addition, the gradual decrease in water resources in the world makes minimum water consumption important in agriculture. For this purpose, three different irrigation levels (I100: control – 100% full irrigation, i.e. 0% deficit irrigation, I50: 50% deficit irrigation, I25: 25% deficit irrigation) were applied within the framework of water constraint, and NaCl was applied at the doses of S0: 0 mM (control), S50: 50 mM and S75: 75 mM to create salt stress, and the experimental plots were designed according to the random plot experimental design with three replications and four plants in each replication. In the genotype × salinity interaction, compounds other than fumaric acid from organic acids formed significant interactions with genotypes YYU-4 and YYU-10. Among phenolic compounds, parameters other than total phenolic and antioxidant content formed significant interactions mainly with cv. Ananas. In the genotype × irrigation interaction, among organic acids, oxalic, succinic and fumaric acids and among phenolic compounds, only vanillic acid showed significant interactions particularly with genotypes YYU-1, YYU-10 and YYU-13. As a result of the study, it was concluded that the determined genotypes are prominent in terms of quality fruit production in saline and arid areas, and it is necessary to examine these genotypes using different parameters in different breeding studies.
References
- Abbas, G., Saqib, M., Akhtar, J., Murtaza, G., Shahid, M. (2015). Effect of salinity on rhizosphere acidification and antioxidant activity of two acacia species. Can. J. For. Res., 45(1), 124–129. https://doi.org/10.1139/cjfr-2014-0354
DOI: https://doi.org/10.1139/cjfr-2014-0354
- Agastian, P., Kingsley, S.J., Vivekanandan, M. (2000). Effect of salinity on photosynthesis and biochemical charac-teristics in mulberry genotypes. Photosynthetica, 38, 287–290. https://doi.org/10.1023/A:1007266932623
DOI: https://doi.org/10.1023/A:1007266932623
- Ahlawat, Y.K., Singh, M., Manorama, K., Lakra, N., Zaid, A., Zulfiqar, F. (2024). Plant phenolics: neglected second-ary metabolites in plant stress tolerance. Rev. Bras. Bot., 47(3), 703–721. https://doi.org/10.1007/s40415-023-00949-x
DOI: https://doi.org/10.1007/s40415-023-00949-x
- Barzegar, T., Heidaryan, N., Lotfi, H., Ghahremani, Z. (2018). Yield, fruit quality and physiological responses of melon cv. Khatooni under deficit irrigation. Adv. Hortic. Sci., 32(4), 451–458. https://doi.org/10.13128/ahs-22456
- Benzie, I.E.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant pow-er’’: the FRAP assay. Anal. Biochem., 239, 70–76. https://doi.org/10.1006/abio.1996.0292
DOI: https://doi.org/10.1006/abio.1996.0292
- Bevilacqua, A.E., Califano, A.N. (1989). Determination of organic acids in dairy products by high performance liquid chromatography. J. Food Sci., 54(4), 1076–1076. https://doi.org/10.1111/j.1365-2621.1989.tb07948.x
DOI: https://doi.org/10.1111/j.1365-2621.1989.tb07948.x
- Bistgani, Z.E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F., Morshedloo, M.R. (2019). Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crops Prod., 135, 311–320. https://doi.org/10.1016/j.indcrop.2019.04.055
DOI: https://doi.org/10.1016/j.indcrop.2019.04.055
- Cholet, C., Claverol, S., Claisse, O., Rabot, A., Osowsky, A., Dumot, V., Ferrari, G., Gny, L. (2016). Tartaricacid pathways in Vitis vinifera L. (cv. Ugni blanc): a comparative study of two vintages with contrasted climatic conditions. BMC Plant Biol., 16(1), 144. https://doi.org/10.1186/s12870-016-0833-1
DOI: https://doi.org/10.1186/s12870-016-0833-1
- De Abreu, I.N., Mazzafera, P. (2005). Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol. Biochem., 43(3), 241–248. https://doi.org/10.1016/j.plaphy.2005.01.020
DOI: https://doi.org/10.1016/j.plaphy.2005.01.020
- Del Carmen Martínez-Ballesta, M., Moreno, D.A., Carvajal, M. (2013). The physiological importance of glucosin-olates on plant response to abiotic stress in Brassica. Int. J. Mol. Sci., 14(6), 11607–11625. https://doi.org/10.3390/ijms140611607
DOI: https://doi.org/10.3390/ijms140611607
- González-Chavira, M.M., Herrera-Hernández, M.G., Guzmán-Maldonado, H., Pons-Hernández, J.L. (2018). Con-trolled water deficit as abiotic stress factor for enhancing the phytochemical content and adding-value of crops. Sci. Hortic., 234, 354–360.
DOI: https://doi.org/10.1016/j.scienta.2018.02.049
- Haghighi, M., Khosravi, S., Sehar, S., Shamsi, I.H. (2023). Foliar-sprayed calcium-tryptophan mediated improve-ment in physio-biochemical attributes and nutritional profile of salt stressed Brassica oleracea var. italica. Sci. Hortic., 307, 111529. https://doi.org/10.1016/j.scienta.2022.111529
DOI: https://doi.org/10.1016/j.scienta.2022.111529
- Jang H.D., Chang, K.S., Huang, Y.S., Hsu, C.L., Lee, S.H., Su, M.S. (2007). Principal phenolic phytochemicals and antioxidant activities of three Chinese medicinal plants. Food Chem., 103(3), 749–756. https://doi.org/10.1016/j.foodchem.2006.09.026
DOI: https://doi.org/10.1016/j.foodchem.2006.09.026
- Kang, S.M., Shahzad, R., Bilal, S., Khan, A.L., Park, Y.G., Lee, K.E., Lee, I.J. (2019). Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol., 19, 1–14.
DOI: https://doi.org/10.1186/s12866-019-1450-6
- Khan, R., Ma, X., Hussain, Q., Chen, K., Farooq, S., Asim, M., Shi, Y. (2023). Transcriptome and anatomical studies reveal alterations in leaf thickness under long-term drought stress in tobacco. J. Plant Physiol., 281, 153920.
DOI: https://doi.org/10.1016/j.jplph.2023.153920
- Khoshbakht, D., Asghari, M.R., Haghighi, M. (2018). Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence, photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress. Photosynthetica, 56, 1313–1325.
DOI: https://doi.org/10.1007/s11099-018-0839-z
- Kıran, S., Özkay, F., Ellialtıoğlu, Ş., Kuşvuran, Ş. (2014). Kuraklık stresi uygulanan kavun genotiplerinde bazı fizy-olojik değişimler üzerine araştırmalar. Toprak Su Derg., 3(1), 53–58.
DOI: https://doi.org/10.21657/tsd.67125
- Kuşvuran, Ş., Daşgan, H.Y., Abak, K. (2011). Farklı kavun genotiplerinin kuraklık stresine tepkileri. Yuzuncu Yıl University. J. Agric. Sci., 21(3), 209–219.
- Kuşvuran, Ş., Ellialtıoğlu, Ş., Abak, K., Yaşar. F. (2007). Bazı kavun cucumis sp. Genotiplerinin tuz stresine tepkileri. J. Agric. Sci., 13(4), 395–404.
DOI: https://doi.org/10.1501/Tarimbil_0000000385
- Kuşvuran, Ş., Yaşar, F., Abak, K., Ellialtıoğlu, Ş. (2008). Tuz stresi altında yetiştirilen tuza tolerant ve duyarlı Cu-cumis sp.'nin bazı genotiplerinde lipid peroksidasyonu, klorofil ve iyon miktarlarında meydana gelen değişimler. Yüzüncü Yıl Üniversitesi Tarım Bilim. Derg., 18(1), 13–20.
- Lopez-Berenguer, C., Martínez-Ballesta, M.D.C., Moreno, D.A., Carvajal, M., Garcia-Viguera, C. (2009). Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J. Agric. Food Chem., 57(2), 572–578.
DOI: https://doi.org/10.1021/jf802994p
- Ma, W.F., Li, Y.B., Nai, G.J., Liang, G.P., Ma, Z.H., Chen, B.H., Mao, J. (2022). Changes and response mechanism of sugar and organic acids in fruits under water deficit stress. PeerJ, 10, e13691.
DOI: https://doi.org/10.7717/peerj.13691
- Marjanović, M., Stikić, R., Vucelić-Radović, B., Savić, S., Jovanović, Z., Bertin, N., Faurobert, M. (2012). Growth and proteomic analysis of tomato fruit under partial root-zone drying. Omics J. Integrat. Biol., 16(6), 343–356. https://doi.org/10.1089/omi.2011.0076
DOI: https://doi.org/10.1089/omi.2011.0076
- Mickky, B.M., Abbas, M.A., Sameh, N.M. (2019). Morpho-physiological status of fenugreek seedlings under NaCl stress. J. King Saud Univ. Sci., 31(4), 1276–1282. https://doi.org/10.1016/j.jksus.2019.02.005
DOI: https://doi.org/10.1016/j.jksus.2019.02.005
- Mirás-Avalos, J.M., Intrigliolo, D.S. (2017). Grape composition under abiotic constrains: water stress and salinity. Front. Plant Sci., 8, 851.
DOI: https://doi.org/10.3389/fpls.2017.00851
- Navarro, J.M., Flores, P., Garrido, C., Martinez, V. (2006). Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem., 96(1), 66–73.
DOI: https://doi.org/10.1016/j.foodchem.2005.01.057
- Özbek, Ö. (2021). Kısıntılı sulamanın farklı kavun (Cucumis melo L.) çeşitlerinin verim ve kalite özelliklerine etkisi. [The effects of deficit irrigation on yield and quality characteristics of different melon (Cucumis Melo L.) varie-ties]. Doctoral dissertation, Akdeniz University.
- Parida, A.K., Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf., 60(3), 324–349.
DOI: https://doi.org/10.1016/j.ecoenv.2004.06.010
- Pék, Z., Szuvandzsiev, P., Daood, H., Neményi, A., Helyes, L. (2014). Effect of irrigation on yield parameters and antioxidant profiles of processing cherry tomato. Open Life Sci., 9(4), 383–395.
DOI: https://doi.org/10.2478/s11535-013-0279-5
- Rashmi, H.B., Negi, P.S. (2020). Phenolic acids from vegetables: a review on processing stability and health bene-fits. Int. Food Res., 136, 109298.
DOI: https://doi.org/10.1016/j.foodres.2020.109298
- Rezazadeh, A., Ghasemnezhad, A., Barani, M., Telmadarrehei, T. (2012). Effect of salinity on phenolic composi-tion and antioxidant activity of artichoke (Cynara scolymus L.) leaves. Res. J. Med. Plant, 6 (3), 245–252.
DOI: https://doi.org/10.3923/rjmp.2012.245.252
- Rodriguez-Delgado, M.A., Malovana, S., Perez, J.P., Borges, T., Montelongo, F.G. (2001). Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J. Chro-matogr. A, 912(2), 249–257.
DOI: https://doi.org/10.1016/S0021-9673(01)00598-2
- Saud, S., Xiaojuan, T., Fahad, S. (2024). The consequences of fermentation metabolism on the qualitative qualities and biological activity of fermented fruit and vegetable juices. Food Chem. X, 21, 101209. https://doi.org/10.1016/j.fochx.2024.101209
DOI: https://doi.org/10.1016/j.fochx.2024.101209
- Seymen, M., Yavuz, D., Ercan, M., Akbulut, M., Çoklar, H., Kurtar, E.S., Türkmen, Ö. (2021). Effect of wild water-melon rootstocks and water stress on chemical properties of watermelon fruit. Hortic. Environ. Biotechnol., 62(3), 411–422. https://doi.org/10.1007/s13580-020-00329-4
DOI: https://doi.org/10.1007/s13580-020-00329-4
- Taghadosinia, F., Ghahremani, Z., Barzegar, T., Aelaei, M. (2020). Effect of deficit irrigation at different growth stages of two Iranian melon accessions on growth, yield, fruit quality and water use efficiency. Iran. J. Hortic. Sci., 51(2), 503–515.
- Tahjib-Ul-Arif, M., Zahan, M.I., Karim, M.M., Imran, S., Hunter, C.T., Islam, M.S., Murata, Y. (2021). Citric acid-mediated abiotic stress tolerance in plants. Int. J. Mol. Sci., 22(13), 7235. https://doi.org/10.3390/ijms22137235
DOI: https://doi.org/10.3390/ijms22137235
- Telesiński, A., Nowak, J., Smolik, B., Dubowska, A., Skrzypiec, N. (2008). Effect of soil salinity on activity of anti-oxidant enzymes and content of ascorbic acid and phenols in bean [Phaseolus vulgaris L.] plants. J. Element., 13(3).
- Ussahatanonta, S., Jackson, D.I., Rowe, R.N. (1996). Effects of nutrient and water stress on vegetative and repro-ductive growth in Vitis vinifera L. Austr. J. Grape Wine Res., 2(2), 64–69. https://doi.org/10.1111/j.1755-0238.1996.tb00096.x
DOI: https://doi.org/10.1111/j.1755-0238.1996.tb00096.x
- Wahid, A., Ghazanfar, A. (2006). Possible involvement of some secondary metabolites in salt tolerance of sugar-cane. J. Plant Physiol., 163(7), 723–730. https://doi.org/10.1016/j.jplph.2005.07.007
DOI: https://doi.org/10.1016/j.jplph.2005.07.007
- Waśkiewicz, A., Muzolf-Panek, M., Goliński, P. (2013). Phenolic content changes in plants under salt stress. In: Ahmad, P., Azooz, M., Prasad, M. (eds), Ecophysiology and responses of plants under salt stress. Springer, New York, 283–314.
DOI: https://doi.org/10.1007/978-1-4614-4747-4_11
- Yuan, G., Wang, X., Guo, R., Wang, Q. (2010). Effect of salt stress on phenolic compounds, glucosinolates, myrosi-nase and antioxidant activity in radish sprouts. Food Chem., 121(4), 1014–1019.
DOI: https://doi.org/10.1016/j.foodchem.2010.01.040
- Zamljen, T., Medic, A., Hudina, M., Veberic, R., Slatnar, A. (2022). Salt stress differentially affects the primary and secondary metabolism of peppers (Capsicum annuum L.) according to the genotype, fruit part, and salinity lev-el. Plants, 11(7), 853.
DOI: https://doi.org/10.3390/plants11070853
- Zulfiqar, F., Ashraf, M. (2021). Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol. Bio-chem., 160, 257–268.
DOI: https://doi.org/10.1016/j.plaphy.2021.01.028
Downloads
Download data is not yet available.
-
Andrzej Sałata,
Robert Gruszecki,
THE QUANTITATIVE ANALYSIS OF POLIPHENOLIC COMPOUNDS IN DIFFERENT PARTS OF THE ARTICHOKE (cynara scolymus L.) DEPENDING ON GROWTH STAGE OF PLANTS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 9 No. 3 (2010)
-
Hasan Sardar,
Safina Naz,
Shaghef Ejaz,
Omer Farooq,
Atique-ur Rehman,
Muhammad Sameen,
Gulzar Akhtar,
Effect of foliar application of zinc oxide on growth and photosynthetic traits of cherry tomato under calcareous soil conditions
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 1 (2021)
-
Magdalena Rybus-Zając,
Jan Kubiś,
NITROGEN METABOLISM IN CUCUMBER COTYLEONS AND LEAVES EXPOSED TO THE DROUGHT STRESS AND EXCESSIVE UV-B RADIATION
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 5 (2018)
-
Katarzyna Kowalczyk,
Janina Gajc-Wolska,
Jadwiga Radzanowska,
Monika Marcinkowska,
ASSESMENT OF CHEMICAL COMPOSITION AND SENSORY QUALITY OF TOMATO FRUIT DEPENDING ON CULTIVAR AND GROWING CONDITIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 10 No. 4 (2011)
-
Zehra Tuğba Abaci,
Mozhgan Zarifikhosroshahi,
Ebru Kafkas,
Emre Sevindik,
CHEMICAL COMPOSITION, VOLATILES, AND ANTIOXIDANT ACTIVITY OF Rosa iberica STEV. hips
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 15 No. 1 (2016)
-
Ye Zhao,
Yongqiang Zhang,
Xianfeng Guo,
Yan Ma,
Peng Zhang,
Hongling Liu,
Gang Liu,
Jing Guo,
CHINESE CABBAGE BrMYB34.2 TRANSCRIPTION FACTOR REGULATES INDOLIC GLUCOSINOLATES BIOSYNTHESIS IN Arabidopsis
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 1 (2020)
-
Iwona Szot,
Paweł Szot,
Tomasz Lipa,
Bożena Sosnowska,
Bohdan Dobrzański,
Determination of physical and chemical properties of cornelian cherry (Cornus mas l.) fruits depending on degree of ripening and ecotypes
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 2 (2019)
-
Andrzej Kalisz,
Andrzej Kornaś,
Dalibor Húska,
Radim Zelinka,
Agnieszka Sękara,
Robert Pokluda,
Andrzej Sałata,
Joanna Gil,
Investigating the impact of TiO2 nanoparticles on bioactive compounds in sweet pepper seedlings: a comparison of foliar and root application methods
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 22 No. 4 (2023)
-
Aliaksandr Abukhovich,
Jolanta Kobryń,
YIELD AND CHANGES IN THE FRUIT QUALITY OF CHERRY TOMATO GROWN ON THE COCOFIBRE AND ROCKWOOL SLABS USED FOR THE SECOND TIME
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 9 No. 4 (2010)
-
Monika Figiel-Kroczyńska,
Marcelina Krupa-Małkiewicz,
Ireneusz Ochmian,
Effect of Actisil (Hydroplus™), organic supplements, and pH of the medium on the micropropagation of Vaccinium corymbosum
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 5 (2022)
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.