Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 6 (2024)

Articles

Bioactive compounds in different melon (Cucumis melo L.) genotypes and one cultivar grown under deficit irrigation and salt stress

DOI: https://doi.org/10.24326/asphc.2024.5401
Submitted: July 2, 2024
Published: 2024-12-20

Abstract

Drought and salinity are the most important abiotic factors limiting agricultural production. One of the effective ways to avoid their negative effects on plants is to determine the genotypes that will show resistance to these stress conditions. In addition, the gradual decrease in water resources in the world makes minimum water consumption important in agriculture. For this purpose, three different irrigation levels (I100: control – 100% full irrigation, i.e. 0% deficit irrigation, I50: 50% deficit irrigation, I25: 25% deficit irrigation) were applied within the framework of water constraint, and NaCl was applied at the doses of S0: 0 mM (control), S50: 50 mM and S75: 75 mM to create salt stress, and the experimental plots were designed according to the random plot experimental design with three replications and four plants in each replication. In the genotype × salinity interaction, compounds other than fumaric acid from organic acids formed significant interactions with genotypes YYU-4 and YYU-10. Among phenolic compounds, parameters other than total phenolic and antioxidant content formed significant interactions mainly with cv. Ananas. In the genotype × irrigation interaction, among organic acids, oxalic, succinic and fumaric acids and among phenolic compounds, only vanillic acid showed significant interactions particularly with genotypes YYU-1, YYU-10 and YYU-13. As a result of the study, it was concluded that the determined genotypes are prominent in terms of quality fruit production in saline and arid areas, and it is necessary to examine these genotypes using different parameters in different breeding studies.

References

  1. Abbas, G., Saqib, M., Akhtar, J., Murtaza, G., Shahid, M. (2015). Effect of salinity on rhizosphere acidification and antioxidant activity of two acacia species. Can. J. For. Res., 45(1), 124–129. https://doi.org/10.1139/cjfr-2014-0354 DOI: https://doi.org/10.1139/cjfr-2014-0354
  2. Agastian, P., Kingsley, S.J., Vivekanandan, M. (2000). Effect of salinity on photosynthesis and biochemical charac-teristics in mulberry genotypes. Photosynthetica, 38, 287–290. https://doi.org/10.1023/A:1007266932623 DOI: https://doi.org/10.1023/A:1007266932623
  3. Ahlawat, Y.K., Singh, M., Manorama, K., Lakra, N., Zaid, A., Zulfiqar, F. (2024). Plant phenolics: neglected second-ary metabolites in plant stress tolerance. Rev. Bras. Bot., 47(3), 703–721. https://doi.org/10.1007/s40415-023-00949-x DOI: https://doi.org/10.1007/s40415-023-00949-x
  4. Barzegar, T., Heidaryan, N., Lotfi, H., Ghahremani, Z. (2018). Yield, fruit quality and physiological responses of melon cv. Khatooni under deficit irrigation. Adv. Hortic. Sci., 32(4), 451–458. https://doi.org/10.13128/ahs-22456
  5. Benzie, I.E.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant pow-er’’: the FRAP assay. Anal. Biochem., 239, 70–76. https://doi.org/10.1006/abio.1996.0292 DOI: https://doi.org/10.1006/abio.1996.0292
  6. Bevilacqua, A.E., Califano, A.N. (1989). Determination of organic acids in dairy products by high performance liquid chromatography. J. Food Sci., 54(4), 1076–1076. https://doi.org/10.1111/j.1365-2621.1989.tb07948.x DOI: https://doi.org/10.1111/j.1365-2621.1989.tb07948.x
  7. Bistgani, Z.E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F., Morshedloo, M.R. (2019). Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crops Prod., 135, 311–320. https://doi.org/10.1016/j.indcrop.2019.04.055 DOI: https://doi.org/10.1016/j.indcrop.2019.04.055
  8. Cholet, C., Claverol, S., Claisse, O., Rabot, A., Osowsky, A., Dumot, V., Ferrari, G., Gny, L. (2016). Tartaricacid pathways in Vitis vinifera L. (cv. Ugni blanc): a comparative study of two vintages with contrasted climatic conditions. BMC Plant Biol., 16(1), 144. https://doi.org/10.1186/s12870-016-0833-1 DOI: https://doi.org/10.1186/s12870-016-0833-1
  9. De Abreu, I.N., Mazzafera, P. (2005). Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol. Biochem., 43(3), 241–248. https://doi.org/10.1016/j.plaphy.2005.01.020 DOI: https://doi.org/10.1016/j.plaphy.2005.01.020
  10. Del Carmen Martínez-Ballesta, M., Moreno, D.A., Carvajal, M. (2013). The physiological importance of glucosin-olates on plant response to abiotic stress in Brassica. Int. J. Mol. Sci., 14(6), 11607–11625. https://doi.org/10.3390/ijms140611607 DOI: https://doi.org/10.3390/ijms140611607
  11. González-Chavira, M.M., Herrera-Hernández, M.G., Guzmán-Maldonado, H., Pons-Hernández, J.L. (2018). Con-trolled water deficit as abiotic stress factor for enhancing the phytochemical content and adding-value of crops. Sci. Hortic., 234, 354–360. DOI: https://doi.org/10.1016/j.scienta.2018.02.049
  12. Haghighi, M., Khosravi, S., Sehar, S., Shamsi, I.H. (2023). Foliar-sprayed calcium-tryptophan mediated improve-ment in physio-biochemical attributes and nutritional profile of salt stressed Brassica oleracea var. italica. Sci. Hortic., 307, 111529. https://doi.org/10.1016/j.scienta.2022.111529 DOI: https://doi.org/10.1016/j.scienta.2022.111529
  13. Jang H.D., Chang, K.S., Huang, Y.S., Hsu, C.L., Lee, S.H., Su, M.S. (2007). Principal phenolic phytochemicals and antioxidant activities of three Chinese medicinal plants. Food Chem., 103(3), 749–756. https://doi.org/10.1016/j.foodchem.2006.09.026 DOI: https://doi.org/10.1016/j.foodchem.2006.09.026
  14. Kang, S.M., Shahzad, R., Bilal, S., Khan, A.L., Park, Y.G., Lee, K.E., Lee, I.J. (2019). Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol., 19, 1–14. DOI: https://doi.org/10.1186/s12866-019-1450-6
  15. Khan, R., Ma, X., Hussain, Q., Chen, K., Farooq, S., Asim, M., Shi, Y. (2023). Transcriptome and anatomical studies reveal alterations in leaf thickness under long-term drought stress in tobacco. J. Plant Physiol., 281, 153920. DOI: https://doi.org/10.1016/j.jplph.2023.153920
  16. Khoshbakht, D., Asghari, M.R., Haghighi, M. (2018). Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence, photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress. Photosynthetica, 56, 1313–1325. DOI: https://doi.org/10.1007/s11099-018-0839-z
  17. Kıran, S., Özkay, F., Ellialtıoğlu, Ş., Kuşvuran, Ş. (2014). Kuraklık stresi uygulanan kavun genotiplerinde bazı fizy-olojik değişimler üzerine araştırmalar. Toprak Su Derg., 3(1), 53–58. DOI: https://doi.org/10.21657/tsd.67125
  18. Kuşvuran, Ş., Daşgan, H.Y., Abak, K. (2011). Farklı kavun genotiplerinin kuraklık stresine tepkileri. Yuzuncu Yıl University. J. Agric. Sci., 21(3), 209–219.
  19. Kuşvuran, Ş., Ellialtıoğlu, Ş., Abak, K., Yaşar. F. (2007). Bazı kavun cucumis sp. Genotiplerinin tuz stresine tepkileri. J. Agric. Sci., 13(4), 395–404. DOI: https://doi.org/10.1501/Tarimbil_0000000385
  20. Kuşvuran, Ş., Yaşar, F., Abak, K., Ellialtıoğlu, Ş. (2008). Tuz stresi altında yetiştirilen tuza tolerant ve duyarlı Cu-cumis sp.'nin bazı genotiplerinde lipid peroksidasyonu, klorofil ve iyon miktarlarında meydana gelen değişimler. Yüzüncü Yıl Üniversitesi Tarım Bilim. Derg., 18(1), 13–20.
  21. Lopez-Berenguer, C., Martínez-Ballesta, M.D.C., Moreno, D.A., Carvajal, M., Garcia-Viguera, C. (2009). Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J. Agric. Food Chem., 57(2), 572–578. DOI: https://doi.org/10.1021/jf802994p
  22. Ma, W.F., Li, Y.B., Nai, G.J., Liang, G.P., Ma, Z.H., Chen, B.H., Mao, J. (2022). Changes and response mechanism of sugar and organic acids in fruits under water deficit stress. PeerJ, 10, e13691. DOI: https://doi.org/10.7717/peerj.13691
  23. Marjanović, M., Stikić, R., Vucelić-Radović, B., Savić, S., Jovanović, Z., Bertin, N., Faurobert, M. (2012). Growth and proteomic analysis of tomato fruit under partial root-zone drying. Omics J. Integrat. Biol., 16(6), 343–356. https://doi.org/10.1089/omi.2011.0076 DOI: https://doi.org/10.1089/omi.2011.0076
  24. Mickky, B.M., Abbas, M.A., Sameh, N.M. (2019). Morpho-physiological status of fenugreek seedlings under NaCl stress. J. King Saud Univ. Sci., 31(4), 1276–1282. https://doi.org/10.1016/j.jksus.2019.02.005 DOI: https://doi.org/10.1016/j.jksus.2019.02.005
  25. Mirás-Avalos, J.M., Intrigliolo, D.S. (2017). Grape composition under abiotic constrains: water stress and salinity. Front. Plant Sci., 8, 851. DOI: https://doi.org/10.3389/fpls.2017.00851
  26. Navarro, J.M., Flores, P., Garrido, C., Martinez, V. (2006). Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem., 96(1), 66–73. DOI: https://doi.org/10.1016/j.foodchem.2005.01.057
  27. Özbek, Ö. (2021). Kısıntılı sulamanın farklı kavun (Cucumis melo L.) çeşitlerinin verim ve kalite özelliklerine etkisi. [The effects of deficit irrigation on yield and quality characteristics of different melon (Cucumis Melo L.) varie-ties]. Doctoral dissertation, Akdeniz University.
  28. Parida, A.K., Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf., 60(3), 324–349. DOI: https://doi.org/10.1016/j.ecoenv.2004.06.010
  29. Pék, Z., Szuvandzsiev, P., Daood, H., Neményi, A., Helyes, L. (2014). Effect of irrigation on yield parameters and antioxidant profiles of processing cherry tomato. Open Life Sci., 9(4), 383–395. DOI: https://doi.org/10.2478/s11535-013-0279-5
  30. Rashmi, H.B., Negi, P.S. (2020). Phenolic acids from vegetables: a review on processing stability and health bene-fits. Int. Food Res., 136, 109298. DOI: https://doi.org/10.1016/j.foodres.2020.109298
  31. Rezazadeh, A., Ghasemnezhad, A., Barani, M., Telmadarrehei, T. (2012). Effect of salinity on phenolic composi-tion and antioxidant activity of artichoke (Cynara scolymus L.) leaves. Res. J. Med. Plant, 6 (3), 245–252. DOI: https://doi.org/10.3923/rjmp.2012.245.252
  32. Rodriguez-Delgado, M.A., Malovana, S., Perez, J.P., Borges, T., Montelongo, F.G. (2001). Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J. Chro-matogr. A, 912(2), 249–257. DOI: https://doi.org/10.1016/S0021-9673(01)00598-2
  33. Saud, S., Xiaojuan, T., Fahad, S. (2024). The consequences of fermentation metabolism on the qualitative qualities and biological activity of fermented fruit and vegetable juices. Food Chem. X, 21, 101209. https://doi.org/10.1016/j.fochx.2024.101209 DOI: https://doi.org/10.1016/j.fochx.2024.101209
  34. Seymen, M., Yavuz, D., Ercan, M., Akbulut, M., Çoklar, H., Kurtar, E.S., Türkmen, Ö. (2021). Effect of wild water-melon rootstocks and water stress on chemical properties of watermelon fruit. Hortic. Environ. Biotechnol., 62(3), 411–422. https://doi.org/10.1007/s13580-020-00329-4 DOI: https://doi.org/10.1007/s13580-020-00329-4
  35. Taghadosinia, F., Ghahremani, Z., Barzegar, T., Aelaei, M. (2020). Effect of deficit irrigation at different growth stages of two Iranian melon accessions on growth, yield, fruit quality and water use efficiency. Iran. J. Hortic. Sci., 51(2), 503–515.
  36. Tahjib-Ul-Arif, M., Zahan, M.I., Karim, M.M., Imran, S., Hunter, C.T., Islam, M.S., Murata, Y. (2021). Citric acid-mediated abiotic stress tolerance in plants. Int. J. Mol. Sci., 22(13), 7235. https://doi.org/10.3390/ijms22137235 DOI: https://doi.org/10.3390/ijms22137235
  37. Telesiński, A., Nowak, J., Smolik, B., Dubowska, A., Skrzypiec, N. (2008). Effect of soil salinity on activity of anti-oxidant enzymes and content of ascorbic acid and phenols in bean [Phaseolus vulgaris L.] plants. J. Element., 13(3).
  38. Ussahatanonta, S., Jackson, D.I., Rowe, R.N. (1996). Effects of nutrient and water stress on vegetative and repro-ductive growth in Vitis vinifera L. Austr. J. Grape Wine Res., 2(2), 64–69. https://doi.org/10.1111/j.1755-0238.1996.tb00096.x DOI: https://doi.org/10.1111/j.1755-0238.1996.tb00096.x
  39. Wahid, A., Ghazanfar, A. (2006). Possible involvement of some secondary metabolites in salt tolerance of sugar-cane. J. Plant Physiol., 163(7), 723–730. https://doi.org/10.1016/j.jplph.2005.07.007 DOI: https://doi.org/10.1016/j.jplph.2005.07.007
  40. Waśkiewicz, A., Muzolf-Panek, M., Goliński, P. (2013). Phenolic content changes in plants under salt stress. In: Ahmad, P., Azooz, M., Prasad, M. (eds), Ecophysiology and responses of plants under salt stress. Springer, New York, 283–314. DOI: https://doi.org/10.1007/978-1-4614-4747-4_11
  41. Yuan, G., Wang, X., Guo, R., Wang, Q. (2010). Effect of salt stress on phenolic compounds, glucosinolates, myrosi-nase and antioxidant activity in radish sprouts. Food Chem., 121(4), 1014–1019. DOI: https://doi.org/10.1016/j.foodchem.2010.01.040
  42. Zamljen, T., Medic, A., Hudina, M., Veberic, R., Slatnar, A. (2022). Salt stress differentially affects the primary and secondary metabolism of peppers (Capsicum annuum L.) according to the genotype, fruit part, and salinity lev-el. Plants, 11(7), 853. DOI: https://doi.org/10.3390/plants11070853
  43. Zulfiqar, F., Ashraf, M. (2021). Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol. Bio-chem., 160, 257–268. DOI: https://doi.org/10.1016/j.plaphy.2021.01.028

Downloads

Download data is not yet available.

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.