Skip to main navigation menu Skip to main content Skip to site footer

ONLINE FIRST

Articles

Effectiveness of UAN fertilisation with potassium thiosulphate in pepper and tomato cultivation

DOI: https://doi.org/10.24326/asphc.2025.5440
Submitted: October 2, 2024
Published: 31.03.2025

Abstract

The European Commission proposed the European Green Deal, aiming to reduce plant nutrient losses by at least 50% while preventing soil fertility deterioration and reducing fertiliser use by at least 20% by 2030. Of particular importance for environmental reasons is the reduction of nitrogen fertilisation rates. UAN is a highly concentrated nitrogen fertiliser in an aqueous solution of nitrate and urea ammonium nitrate. This study evaluated the effectiveness of fertilisation in pepper and tomato cultivation using UAN mixtures with potassi um thiosulphate in proportions selected based on a model pot experiment. The field experiment was conducted from 2019 to 2020 at the Felin Experimental Farm of the University of Life Sciences in Lublin. The test plants were sweet peppers of the Balta F1 cultivar  (Capsicum annuum L.) and tomatoes of the Mirsini cultivar (Lycopersicon esculentum Mill.). The experiment included the following variable factors: nitrogen dose (2 levels: N1 – optimum nitrogen rate and N2 – nitrogen rate reduced by 25% from the optimum dose) and fertiliser composition (2 levels: pure UAN – N : K0 : S0, UAN with potassium thiosulphate – N : K1: S1). Taking into account the pepper yield and the accumulation of nitrogen, phosphorus, potassium and sulphur in the fruit, the most favourable fertilisation combination was the combination of an optimal nitrogen dose (170 kg N ha1) with potassium thiosulphate. The reduction of the nitrogen dose and the treatment of fertilisation with a dose of 128 kg N ha‒1 with potassium thiosulphate favoured an increase in the vitamin C content of the pepper fruit. The effect of nitrogen dose on tomato fruit yield was modified by the year of the study. Thus, in tomatoes, it is possible to reduce the nitrogen dose depending on weather conditions. At the same time, the addition of potassium thiosulphate is recommended, which has a beneficial effect on the fruit’s potassium, phosphorus and sulphur and vitamin C content. There was no significant effect of varying nitrogen and potassium fertilisation on the dry matter content of pepper and tomato fruit, while the effect on calcium, magnesium and extract content was inconclusive.

References

  1. Al-Karaki, G.N. (2000). Growth, sodium, and potassium uptake and translocation in salt stressed tomato. J. Plant Nut., 23(3), 369–379. https://doi.org/10.1080/01904160009382023
  2. Artyszak, A., Gozdowski, D. (2020). Is it possible to replace part of the mineral nitrogen dose in maize for grain by using growth activators and plant growth-promoting rhizobacteria? Agronomy, 10(11), 1647–1657. https://doi.org/10.3390/agronomy10111647
  3. Botella, M.Á., Arévalo, L., Mestre, T.C., Rubio, F., García-Sánchez, F., Rivero, R.M., Martínez, V. (2017). Potassium fertilization enhances pepper fruit quality. J. Plant Nutr., 40(2), 145–155. https://doi.org/10.1080/01904167.2016.1201501
  4. Boratyński, K., Grom, A., Ziętecka, M. (1975). Research on the content of sulphur in soil. Part I. Methodological investigations on sulphate sulphur determinations. Rocz. Glebozn., 26, 121–139.
  5. Breś, W., Ruprik, B. (2006). Growing of greenhouse cherry tomato in coconut fibre with differentiated nitrogen and potassium fertilization. Part II. Changes in chemical composition of nutrient solutions in root environment. Acta Agrophys., 7(3), 539–548. http://www.acta-agrophysica.org/pdf-107894-38700?filename=Growing%20of%20greenhouse.pdf
  6. Breś, W., Ruprik, B. (2007). Growing of greenhouse cherry tomato in coconut fibre with differentiated nitrogen and potassium fertilization. Part IV. Assessment of nutritional status of plants. Acta Agrophys., 9(2), 297–305. http://www.old.acta-agrophysica.org/artykuly/acta_agrophysica/ActaAgr_147_2007_9_2_297.pdf
  7. Bros, S. (2001). Nawożenie roślin uprawnych roztworem saletrzano-mocznikowym RSM. Aktualności Rolnicze. Wojewódzki Ośrodek Doradztwa Rolniczego Barzkowice, 6, 1–12.
  8. Ddamulira, G., Idd, R., Namazzi, S., Kalali, F., Mundingotto, J., Maphosa, M. (2019). Nitrogen and potassium ferti-lizers increase cherry tomato height and yield. J. Agric. Sci., 11(13), 1916–9760. https://doi.org/10.5539/JAS.V11N13P48
  9. Ehsan, M.I., Zameer, M.,, Tahir, R., Zaheer, A., Sagheer, A. (2010). Effect of potash application on yield and quali-ty of tomato. Pak. J. Bot., 42(3), 1695–1702.
  10. El-Bassiony, A.M., Fawzy, Z.F., Abd El-Samad, E.H., Riad, G.S. (2010). Growth, yield and fruit quality of sweet pepper plants (Capsicum annuum L.) as affected by potassium fertilization. J. Am. Sci., 6(12), 722–729.
  11. Golcz, A., Kozik, E. (2004). Effect of several agrotechnical factors on vitamin C content in pepper (Capsicum an-nuum L.) and lettuce (Lactuca sativa L.). Rocz. AR Pozn., 356, 67–74.
  12. Golcz, A., Kujawski, P., Markiewicz, B. (2008). Effect of nitrogen and potassium fertilization on the nutritional status of hot pepper (Capsicum annuum L.) plants and on substrate salinity. Acta Sci. Pol., Hort. Cult., 7(1), 45–52.
  13. Golcz, A., Kujawski, P., Markiewicz, B. (2012). Yielding of red pepper (Capsicum annuum L.) under the influence of varied potassium fertilization. Acta Sci. Pol., Hort. Cult., 11(4), 3–15. http://actascipol.upwr.edu.pl/pl/full/7/2012/000070201200011000040000300015.pdf
  14. Górecki, H. (2002). Wpływ nawozów i nawożenia na środowisko. Przem. Chem., 81(10), 635–643.
  15. Grzesiuk, W. (1968). Nefelometryczne oznaczanie siarki siarczanowej w roślinach. Rocz. Glebozn., 1, 167–173.
  16. Gupta, C.R. Sengar, S.S. (2000). Response of tomato (Lycopersicon esculentum, Mill.) to nitrogen and potassium fertilization in acidic soil of Bastar. Veg. Sci., 27(1), 94–95.
  17. https://nawozy.eu/nawozy/azotowe/rsm.html
  18. https://nawozy.eu/nawozy/azotowe-z-siarka/rsms.html.
  19. Isidora, R., Pavlovic, M., Sala, F., Adina, B. (2008). Potassium fertilization influence upon vegetable yield quality and soil fertility protection. The first International Symposium on Sustainable Agriculture for Subtropical Re-gions, 147–152.
  20. ISO 10390 (2005). Soil Quality – Determination of pH. International Organization for Standardization, Geneva.
  21. ISO 11261 (1995). Soil quality – Determination of total nitrogen – Modified Kjeldahl Method. International Organ-ization for Standardization, Geneva.
  22. IUSS Working Group WRB (2022). World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. International Union of Soil Sciences (IUSS), Vienna, Austria. https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf
  23. Jarosz, Z. (2006). Effect of different types of potassium fertilization on the chemical composition of leaves and fruits of greenhouse tomatoes grown in various substrates. Acta Sci. Pol., Hort. Cul., 5(1), 11–18. https://czasopisma.up.lublin.pl/asphc/article/view/4241
  24. Javaria, S., Khan, M.Q., Rahman, H.U., Bakhsh, I. (2012). Response of tomato (Lycopersicon esculentum L.) yield and post-harvest life to potash levels. Sarhad J. Agric., 28(2), 227–235.
  25. Johnson, C.D., Decoteau, D.R. (1996). Nitrogen and potassium fertility affects jalapeno pepper plant growth, pot yield and pungency. HortScience, 3, 1119–1123.
  26. Kołota, E., Biesiada, A. (2002). The effect of substrate type on yield and nutritional status of tomato plants culti-vated with fertigation. Zesz. Probl. Post. Nauk Rol., 485, 141–146.
  27. Komosa, A. (2000). Dynamika pobierania makroelementów przez pomidora szklarniowego uprawianego w wełnie mineralnej [Dynamics of macroelement uptake by greenhouse tomatoes grown in rockwool] In: Sympozjum „Technologie uprawy pomidorów” Poznań 17–18.10.2000, 25–31.
  28. Kowalska, I. (1996). Ocena przydatności mocznikowej, amonowej i azotanowej formy azotu nawozowego w uprawie szklarniowej pomidora przy zastosowaniu podłoży ogrodniczych. Zesz. Probl. Post. Nauk Rol., 429, 175–180.
  29. Kowalska, I. (2004). The effect of different sulphate levels in the nutrient solution and type of medium on the yield, mineral composition and quality of tomato grown in the NFT. Acta Sci. Pol., Hort. Cult., 3(1), 153–164.
  30. Kowalska, I., Sady, W. (2012). Effect of nitrogen form, type of polyethylene film covering the tunnel and stage of fruit development on calcium content in sweet pepper fruits. Acta Sci. Pol. Hort. Cult., 11(3), 91–100.
  31. Lester, G.E., Jifon, J.J., Makus, D.J., 2010. Impact of potassium nutrition on food quality of fruits and vegetables: a condensed and concise review of the literature. Better Crops 94(1), 18–21. https://www.cabidigitallibrary.org/doi/full/10.5555/20103078887
  32. Mardanluo, S., Souri, M.K., Ahmadi, M. (2018). Plant growth and fruit quality of two pepper cultivars under differ-ent potassium levels of nutrient solutions. J. Plant Nutr., 41(12), 1604–1614. https://doi.org/10.1080/01904167.2018.1463383
  33. Michałojć, Z., Dzida, K. (2012). Yielding and biological value of sweet pepper fruits depending on foliar feeding using calcium. Acta Sci. Pol. Hort. Cult., 11(3), 255–264.
  34. Michałojć, Z.M., Horodko, K. (2006). Effect of calcium foliar nutrition on yield end chemical composition of sweet pepper. Acta Agrophys., 7(3), 671–679.
  35. Nurzyński, J. (1994). Oddziaływanie KCl oraz K2SO4 na plon i zawartość składników pokarmowych w warzywach. W: Ogólnopolska Konferencja ‘Znaczenie potasu i magnezu w uprawie roślin ogrodniczych’, Skierniewice, 31–34.
  36. Ortas, I. (2013). Influences of nitrogen and potassium fertilizer rates on pepper and tomato yield and nutrient up-take under field conditions. Sci. Res. Ess., 7(23), 1048–1055. http://www.academicjournals.org/article/article1380808720_Ortas.pdf
  37. Padem, H., Ocal, A. (1999). Effects of humic acid applications on yield and some characteristics of processing to-mato. Acta Hort., 487, 159–164.
  38. Pitura, K., Michałojć, Z., Nowak L. (2012). The effect of potassium fertilizer kind and calcium on salinity, yielding and biological value selected vegetable species. Ann. UMCS sec. EEE, Horticulturae, 22(3), 13–20. http://wydawnictwo.up.lublin.pl/annales/Horticultura/2012/3/02.pdf
  39. PN-R-04022 (1996). Chemical and agricultural analysis ‒ Determination of the content available potassium in mineral soils. Polish Standards Committee, Warszawa.
  40. PN-R-04023 (1996). Chemical and agricultural analysis ‒ Determination of the content of available phosphorus in mineral soils. Polish Standards Committee, Warszawa.
  41. PN-R-04032 (1998). Soil and mineral materials ‒ sampling and determination of particle size distribution. Polish Committee for Standardization, Warszawa.
  42. Samiullah, K., Khan, N. (2003). Physiological investigation on interactive effect of P and K on growth and yield of chickpea. Ind. J. Plant. Physiol., 8(2), 165–170.
  43. Shehata, S.A., El-Mogy, M.M., Mohamed, H.F. (2019). Postharvest quality and nutrient contents of long sweet pepper enhanced by supplementary potassium foliar application. Int. J. Veg. Sci., 25(2), 196–209. https://doi.org/10.1080/19315260.2018.1523816
  44. Yang, Y., Pan, Y., Zhao, H., Ji, A., Shi, J., Guo, P. (2018). Response surface optimization of cultivation conditions for yield of tomato (Lycopersicon esculentum Mill.) in greenhouses. J. Plant Nut., 41(2), 210–220. https://doi.org/10.1080/01904167.2017.1384010
  45. Yurtseven, E., Kesmez, G.D., Ünlükara, A. (2005). The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central anatolian tomato species (Lycopersicon esculantum). Agric. Water Manag., 78(1–2), 128–135. https://doi.org/10.1016/j.agwat.2005.04.018
  46. Zalewska-Korona, M., Jabłońska-Ryś, E., Michalak-Majewska, M. (2013). Nutritional and health-enhancing value of outdoor tomato fruits. Bromat. Chem. Toksykol., 46(2), 200–205. https://doi.org/10.1016/j.agwat.2005.04.018
  47. Zawartka, L., Ulatowska, D., Kowalski, S. (1996). The effect of different phosphorus and potassium fertilization levels on the content of nitrates in tomato fruits. Zesz. Probl. Post. Nauk Rol., 440, 259–263. https://agris.fao.org/search/en/providers/122651/records/ 6472271177fd37171a72f8d8

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.