Skip to main navigation menu Skip to main content Skip to site footer

Vol. 24 No. 4 (2025)

Articles

Influence of genotype and culture conditions on in vitro gynogenesis in red beet (Beta vulgaris subsp. vulgaris)

DOI: https://doi.org/10.24326/asphc.2025.5473
Submitted: 23 December 2024
Published: 29.08.2025

Abstract

The process was examined or the effect of culture conditions on in vitro gynogenesis in red beet was analyzed, conditions were modified or optimized. A significant influence of the genotype on the gynogenesis process was demonstrated. Of the eight genotypes, 58.3% planted ovules regenerated embryo-like structures in breeding line 411, 2.1% in RA-10, RA-11, RA-12 breeding lines and 0.9% embryo-like structures in Opolski. For the gynogenesis induction, B5 medium containing 0.1 mg L–1 2,4-dichlorophenoxyacetic acid was the most effective from all tested media. On this medium, the highest number of gynogenetic embryo-like structures was obtained. Most of the plants were regenerated on MS medium supplemented with 30 g L–1 sucrose, 0.2 mg L–1 6-benzylaminopurine and 1 mg L–1 indole-3-acetic acid. Thirty nine percent of regenerated plants acclimatized. Cytometric evaluation of gynogenetic plants of four tested genotypes revealed that in three genotypes, 100% of tested plants were haploid. Plants showed diploid ploidy level in one genotype. Isoenzymatic analysis of gynogenetic plants demonstrated that 95% and 70% of examined populations were homozygotic for the phosphohexose isomerase isoenzyme and the aspartato aminotransferase isoenzyme, respectively. During the next generation sequencing, 93% of reads were successfully mapped, from which 83% to 85% were mapped in pairs. For 15% of pairs it was clear that obtained sequence was fully homozygous, the rest of the readings were not unambiguous, but similar to the sequence of a homozygous base pair system.

References

  1. Aflaki, F., Pazuki, A., Gurel, S., Stevanato, P., Biancardi, E., Gurel, E. (2017). Doubled haploid sugar beet: an integrated view of factors influencing the processes of gynogenesis and chromosome doubling. Int. Sugar J., 119, 884–895. https://doi.org/10.1007/978-1-0716-1331-3_21
  2. Alan, A.R., Celebi, T.F., Kaska, A. (2016). Production and evaluation of gynogenic leek (Allium ampeloprasum L.) plants. Plant Cell. Tiss. Organ Cult., 125, 249–259. https://doi.org/10.1007/s11240-016-0944-2
  3. Andersen, S.B., Christiansen, I., Farestveit, B. (1990). Carrot (Daucus carota L.). In vitro production of haploids and field trials. In: Bajaj, Y.P.S. (ed). Biotechnol. Agric. For. 12, 393–402.
  4. Barański, R. (1996). In vitro gynogenesis efficiency in red beet (Beta vulgaris L). Effect of ovule culture conditions. Acta Soc. Bot. Pol., 65(1–2), 57–60. https://doi.org/10.5586/asbp.1996.010
  5. Bohanec, B. (2013). Ploidy determination using flow cytometry. In: Maluszynski, M., Kasha, K.J, Forster, B.P., Szarejko, I. (eds). Doubled Haploid Production in Crop Plants IV, Springer, Dordrecht, 397–403. https://doi.org/10.1007/978-94-017-1293-4_52
  6. Bossoutrot, D., Hosemans, D. (1985). Gynogenesis in Beta vulgaris L. From in vitro culture to the production of doubled haploids plants in soil. Plant Cell Rep., 4(6), 300–303. https://doi.org/10.1007/bf00269883
  7. Claros, M.G., Bautista, R., Guerrero-Fernández, D., Benzerki, H., Seoane, P., Fernández-Pozo, N. (2012). Why assembling plant genome sequences is so challenging. Biology, 1, 439–459. https://doi.org/10.3390/biology1020439
  8. Chu, C. C., Wang, C. C., Sun, C. S., Hsu, C., Yin, K. C., Chu, C. Y., Bi, F. Y. (1975). Establishment of an efficient medium for another culture of rice through comparative experiments on the nitrogen sources. Sci. Sin., 18(5), 659–668.
  9. Djedatin, G., Monat, C., Engelen, S., Sabot, F. (2017). Duplication detector, a light weight tool for duplication detection using NGS data. Curr. Plant. Biol., 9(10), 23–28. https://doi.org/10.1016/j.cpb.2017.07.001
  10. Dohm, J.C., Minoche, A.E., Holtgrawe, D., Capella-Gutierrez, S., Zakrzewski, F., Tafer, H., Rupp, O., Sorensen, T., Stracke, R., Reinhardt, R., Goesmann, A., Kraft, T., Schulz, B., Stadler, P.F., Schmidt, T., Gabaldon, T., Lehrach, H., Weisshaar, B., Himmelbauer, H. (2014). The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature, 505, 546–549. https://doi.org/10.1038/nature12817
  11. Ferrie, A.M.R., Möllers, C. (2011). Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tiss. Organ Cult., 104(3), 375–386. http://dx.doi.org/10.1007/s11240-010-9831-4
  12. Gamborg, O.L., Miller, R.A., Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res., 50(1), 151–158. https://doi.org/10.1016/0014-4827(68)90403-5
  13. Ghosh, N., Caraway, E., Das, A. B., Dani, R. G. (2013). In vitro regeneration of Sugar Beet (Beta vulgaris L.) via leaf explants and callusing. Ann. Plant Sci., 2(10), 405–411.
  14. Gośka, M., Krysińska, T., Strycharczuk, K. (2004). The use of in vitro gynogenesis for obtaining sugar beet dihaploids. IHAR Bulletin, 234, 27–34. https://doi.org/10.37317/biul-2004-0004
  15. Gottlieb, L.D. (1973). Enzyme differentiation and phylogeny in Clarkia franciscana, C. rubicunda and C. amoena. Evolution, 27(2), 205–214. https://doi.org/10.1111/j.1558-5646.1973.tb00666.x
  16. Górecka, K., Dorota, K., Urszula, K. (2007). Regeneration and evaluation of androgenetic plants of head cabbage (Brassica Oleracea var. capitata L.) Veg. Crop. Res. Bull., 67, 5–15. https://doi.org/10.2478/v10032-007-0025-5
  17. Górecka, K., Krzyżanowska, D., Kiszczak, W., Kowalska, U. (2009). Plant regeneration from carrot (Daucus carota L.) anther culture derived embryos. Acta Physiol. Plant., 31(6), 1139–1145.
  18. Górecka, K., Krzyżanowska, D., Kiszczak, W., Kowalska, U., Podwyszyńska, M. (2017). Development of embryoids by microspore and anther cultures of red beet (Beta vulgaris L. subsp. vulgaris). J. Central Eur. Aagric. 18(1), 185–195. https://doi.org/10.5513/JCEA01/18.1.1877
  19. Gupta, P., Reddaiah, B., Salava, H., Upadhyaya, P., Tyagi, K., Sarma, S., Datta, S., Malhotra, B., Thomas, S., Sunkum, A., Devulapalli S., Till, B.J., Sreelakshmi, Y., Sharma, R. (2017). Next-generation sequencing (NGS)-based identification of induced mutations in a doubly mutagenized tomato (Solanum lycopersicum) population. Plant J., 92(3), 495–508. https://doi.org/10.1111/tpj.13654
  20. Gürel, S., Gürel, E., Kaya, Z. (2000). Doubled haploid production from unpollinated ovules of sugar beet (Beta vulgaris L.). Plant Cell Reprod., 19, 1151–1159. https://doi.org/10.1007/s002990000248
  21. Hansen, A.L., Plever, C., Pedersen, H.C., Keimer, B., Andersen, S.B. (1994). Efficient in vitro chromosome doubling during Beta vulgaris ovule culture. Plant Breed., 112(2), 89–95. https://doi.org/10.1111/j.1439-0523.1994.tb00655.x
  22. Hosemans, D., Bossoutrot, D. (1983). Induction of haploid plants from in vitro culture of unpollinated beet ovules (Beta vulgaris L.). Z. Pflanzenziichtg, 91, 74–77.
  23. Joubès, J., Chevalier, C. (2000). Endoreduplication in higher plants. Plant Mol. Biol., 43, 735–745. https://doi.org/10.1023/A:1006446417196
  24. Keleş, D., Özcan, C., Pınar, H., Ata, A., Denli, N., Yücel, N.K., Taşkin, H., Buyukalaca, S. (2016). First report of obtaining haploid plants using tissue culture techniques in spinach. HortSci., 51(6), 742–749. https://doi.org/10.21273/HORTSCI.51.6.742
  25. Kelley, D.R., Salzberg, S.L. (2010). Detection and correction of false segmental duplications caused by genome mis-assembly. Genom. Biol., 11, R28. https://doi.org/10.1186%2Fgb-2010-11-3-r28
  26. Kirikovich, S.S., Svirshchevskaya, A.M., Levites, E.V. (2003). Variation at isozyme loci in seed offspring of sugar beet gynogenetic lines. Sugar Tech., 5, 289–292. http://dx.doi.org/10.1007/BF02942487
  27. Klimek-Chodacka, M., Baranski, R. (2013). Comparison of haploid and doubled haploid sugar beet clones in their ability to micropropagate and regenerate. Electron. J. Biotechnol., 16(2). http://dx.doi.org/10.2225/vol16-issue2-fulltext-3
  28. Kiszczak, W., Krzyżanowska, D., Strycharczuk, K., Kowalska, U., Wolko, B., Górecka, K. (2011). Determination of ploidy and homozygosity of carrot plants obtained from anther cultures. Acta Physiol. Plant, 33(2), 401–407. https://doi.org/10.1007/s11738-010-0559-x
  29. Kiszczak, W., Kowalska, U., Kapuścińska, A., Burian, M., Górecka, K. (2015). Effect of low temperature on in vitro androgenesis of carrot (Daucus carota L.). In Vitro Cell Dev. Biol.-Plant, 51(2),135–142. https://doi.org/10.1007/s11627-015-9665-1
  30. Kiszczak, W., Kowalska, U., Burian, M., Górecka, K. (2018). Induced androgenesis as a biotechnology method for obtaining DH plants in Daucus carota L. J. Hortic. Sci. Biotechnol., 93(6), 625–633.
  31. Kiszczak, W., Burian, M., Kowalska, U., Górecka, K., Podwyszyńska M. (2021). Production of homozygous red beet (Beta vulgaris L. subsp. vulgaris) plants by ovule culture. Methods Mol. Biol., 2289, 301–312. https://doi.org/10.1007/978-1-0716-1331-3_20.
  32. Kiszczak, W., Kowalska, U., Burian, M., Podwyszyńska, M., Górecka, K. (2023). Influence of polyamines on red beet (Beta vulgaris L. ssp. vulgaris) gynogenesis. Agronomy, 13(2), 537. https://doi.org/10.3390/agronomy13020537
  33. Kumar, S., Banks, T.W., Cloutier, S. (2012). SNP Discovery through Next-Generation Sequencing and its applications. Int. J. Plant. Genom., 1–15. http://dx.doi.org/10.1155/2012/831460
  34. Kruskal, W.H., Wallis, W.A. (1952). Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47(260), 583–621. https://doi.org/10.2307/2280779
  35. Levites, E.V., Svirshchevskaya, A.M., Kirikovichi, S.S., Mil’ko, L.V. (2005). Variation at isozyme loci in cultured in vitro sugar beet regenerants of gynogenetic origin. Sug. Tech., 7(1), 71–75. https://doi.org/10.1007/BF02942421
  36. Linsmaier, E.M., Skoog, F. (1965). Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant., 18, 100–128. https://doi.org/10.1111/j.1399-3054.1965.tb06874.x
  37. Ludina, R.S., Levites, E.V. (2003). [Subcellular localization of isozymes of NAD-dependent malate dehydrogenase in sugar beet Beta vulgaris L.]. Genetika, 44(12), 1638–1643 [in Russian].
  38. Lukaszewska, E., Virden, R., Sliwinska, E. (2011). Hormonal control of endoreduplication in sugar beet (Beta vulgaris L.) seedlings growing in vitro. Plant Biol., 14(1), 216–222. http://dx.doi.org/10.1111/j.1438-8677.2011.00477.x
  39. de Oliveira, C.E.G., Chamma, D.L.M., Oliveira, B.F., Von, P.R.G., Nayara, S.T. (2013). Identification of haploid maize by flow cytometry, morphological and molecular markers. Ciência Agrotec., 37(1), 25–11. https://dx.doi.org/10.1590/S1413-70542013000100003
  40. O’Malley, R.C., Barragan, C.C., Ecker, J.R. (2017). A user’s guide to the arabidopsis T-DNA insertional mutant collections. In: Alonso, J., Stepanova, A. (eds). Plant Functional Genomics. Methods in Molecular Biology, vol. 1284. Humana Press, New York, NY, 323–342. https://doi.org/10.1007%2F978-1-4939-2444-8_16
  41. Maraschin, S.F., de Priester, W., Spaink, H.P., Wang, M. (2005). Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J. Exp. Bot., 56(417), 1711–1726. https://doi.org/10.1093/jxb/eri190
  42. Metwally, E.I., Moustafa, S.A., El-Sawy, B.I., Haroun, S.A., Shalaby, T.A. (1998). Production of haploid plants from in vitro culture of unpollinated ovules of Cucurbita pepo. Plant Cell Tiss. Org. Cult., 52(3), 117–121. http://dx.doi.org/10.1023/A:1005948809825
  43. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioasseys with tobacco tissue cultures. Physiol. Plant., 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  44. Murovec, J., Bohanec, B. (2012). Haploids and doubled haploids in plant breeding biochemistry, genetics and molecular biology. In: Ibrokhim, Y. (ed). Plant Breed., 5, 1–21. http://doi.org/10.5772/29982
  45. Nagl, N., Mezei, S., Kovačev, L., Vasić, D., Čačić, N. (2004). Induction and micropropagation potential of sugar beet haploids. Genetik, 36(3), 187–194. http://dx.doi.org/10.2298/GENSR0403187N
  46. Nielsen, R., Paul, J.S., Albrechtsen, A., Song, Y.S. (2011). Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. 12(6), 443–451. http://dx.doi.org/10.1038/nrg2986
  47. Nitsch, J.P., Nitsch, C. (1969). Haploid plants from pollen grains. Sci., 163, 85–87. http://dx.doi.org/10.1126/science.163.3862.85
  48. Passricha, N., Saifi, S., Khatodia, S., Tuteja, N. (2016). Assessing zygosity in progeny of transgenic plants: current methods and perspectives. J. Biol. Methods., 3(3), e46. https://doi.org/10.14440/jbm.2016.114
  49. Pazuki, A., Aflaki, F., Gürel, E., Ergül, A. (2017). Gynogenesis induction in sugar beet (Beta vulgaris) improved by 6-benzylaminopurine (BAP) and synergized with cold pretreatment. Sugar Tech., 20, 69–77. http://dx.doi.org/10.1007/s12355-017-0522-x
  50. Ries, D., Holtgräwe, D., Viehöver, P., Weisshaar, B. (2016). Rapid gene identification in sugar beet using deep sequencing of DNA from phenotypic pools selected from breeding panels. BMC Genomics, 17, 236. http://dx.doi.org/10.1186/s12864-016-2566-9
  51. Rekha, H.R., Rakhi, C. (2013). Establishment of dedifferentiated callus of haploid origin from unfertilized ovaries of tea (Camellia sinensis (L.) O. Kuntze) as a potential source of total phenolics and antioxidant activity. In Vitro Cell Dev. Biol-Plant., 49, 960–969. https://doi.org/10.1007/s11627-013-9490-3
  52. Rogozińska, J.H., Gośka, M. (1982). Attempts to induce haploids in anther cultures of sugar, fodder and wild-species of beet. Acta Soc. Bot. Pol., 51(1), 91–105. https://doi.org/10.5586/asbp.1982.009
  53. Sabir, A., Newbury, H.J., Todd, G., Catty, J., Ford-Lloyd, B.V. (1992). Determination of genetic stability using isozymes and RFLPs in beet plants regenerated in vitro. Theor. Appl. Genet., 84, 113–117. https://doi.org/10.1007/bf00223989
  54. Segui-Simarro, J.M., Nuez, F. (2008). How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore derived embryogenesis. Physiol Plant., 134(1), 1–12. https://doi.org/10.1111/j.1399-3054.2008.01113.x
  55. Salvi, N.D., George, L.Y., Eapen, S. (2002). Micropropagation and field evaluation of micropropagated plants of tumeric. Plant Cell Tiss. Oorg. Cult., 68, 143–151. http://dx.doi.org/10.1023/A:1013889119887
  56. Selander, R.K., Smith, M.H., Yang, S.Y., Johnson, W.E., Gentry, J.B. (1971). Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-tield mouse (Peromyscus polionotus). Univ. Texas Publ., 7103, 49–90.
  57. Song, H.J., Lee, J.M., Graf, L., Rho, M., Qiu, H., Bhattacharya, D., Yoon, H.S. (2016). A novice’s guide to analyzing NGS-derived organelle and metagenome data. Algae 31(2), 137–154. https://doi.org/10.4490/algae.2016.31.6.5
  58. Svirshchevskaya, A., Dolezel, J. (2001). Karyological characterization of sugar beet gynogenetic lines cultured in vitro. J. Appl. Genet., 42(1), 21–32.
  59. Szklarczyk, M. (2016). The search for mitochondrial polymorphisms differentiating cytoplasmic male-sterile and male-fertile beets. Scien. J. Agr. Univ. Hugo Kołłątaj Krakow, 408, 1–108.
  60. Szkutnik, T. (2010). Apomixis in the sugar beet reproduction system. Acta Biol. Cracov Ser. Bot., 52(2), 87–96. https://doi.org/10.2478/v10182-010-0011-y
  61. Śliwińska, E. (2008). [Estimation of DNA content in plants using flow cytometry]. Adv. Cell Biol. Suppl., 35(24), 165–176 [in Polish].
  62. Tomaszewska-Sowa, M. (2010). Cytometric analyses of sugar beet (Beta vulgaris l.) Plants regenerated from unfertilized ovules cultured in vitro. Electron. J. Pol. Agric. Univ., 13(4).
  63. Tyukavin, G.B., Shmykova, N.A., Mankhova, M.A. (1999). Cytological study of embryogenesis in cultured carrot anthers. Russ. J. Plant. Physl., 46(6), 876–884.
  64. Wang, B., Tseng, E., Regulski, M., Clark, T.A., Hon, T., Jiao, Y., Lu, Z., Olson, A., Stein, J.C., Ware, D. (2016). Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat. Commun., 7, 11708. https://doi.org/10.1038/ncomms11708
  65. Weeden, F.N., Gottlieb, L.D. (1980). Isolation of cytoplasmic enzymes from pollen. Plant Physiol., 66(3), 400–403. https://doi.org/10.1104/pp.66.3.400
  66. Weich, E.W., Levall, M.W. (2003). Doubled haploid production of sugar beet (Beta vulgaris L.). In: Maluszynski, M., Kasha, K.J., Forster, B.P., Szarejko, I. (eds). Doubled haploid production in crop plants. Berlin, Springer, Dordrecht, 255–263. https://doi.org/10.1007/978-94-
  67. 017-1293-4_38
  68. Westphal, L., Wricke, G. (1989). Genetic analysis of DIA, GOT and PGI isozyme loci in Daucus carota L. ssp. sativas. Plant Breed, 102(1), 51–57. https://doi.org/10.1111/j.1439-0523.1989.tb00314.x
  69. Wędzony, M., Żur, I., Golemiec, E., Szechyńska-Hebda, M., Dubas, E., Gołębiowska, G. (2009). Progress in doubled haploid technology in higher plants. In: Touraev, A., Forster, B.P., Jain, S.M. (eds). Advances in Haploid Production in Higher Plants, Springer, Dordrecht, 1–14.
  70. Wremerth-Weich, E., Leval, M. (2003). Doubled haploid production of sugar beet (Beta vulgaris L.). In: Maluszynski, M., Kasha, K.J., Forster, B.P., Szarejko, I. (eds). Doubled Haploid Production in Crop Plants – A Manual. Kluwer, Dordrecht, Boston, London, 255–265.
  71. Van Geyt, J., Speckmann, G.J. Jr, D’Halluin, K., Jacobs, M. (1987). In vitro induction of haploid plants from unpollinated ovules and ovaries of the sugarbeet (Beta vulgaris L). Theor. Appl. Genet., 73, 920–925. https://doi.org/10.1007/bf00289399
  72. Zayachkovskaya, T., Domblides, E., Zayachkovsky, V., Kan, L., Domblides, A., Soldatenko, A. (2021). Production of gynogenic plants of red beet (Beta vulgaris L.) in unpollinated ovule culture in vitro. Plants, 10(12), 2703. https://doi.org/10.3390/plants10122703
  73. Zheng, K., Konzak C.F. (1999). Effect of 2,4D-dichlorofenoxyacetic acid on callus induction and plant regeneration in another culture of wheat (Triticum aestivum L.). Plant Cell Rep., 19(1), 69–73. https://doi.org/10.1007/s002990050712
  74. Zhuzhzhalova, T.P., Podvigina, O.A., Znamenskaya, V.V., Vasil’chenko, E.N., Karpechenko, N.A., Zemlyanukhina, O.A. (2016). Sugar beet (Beta vulgaris L.) haploid parthenogenesis in vitro: factors and diagnostic characters. Agric. Biol., 51(5), 636–644. http://dx.doi.org/10.15389/agrobiology.2016.5.636eng

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.