Skip to main navigation menu Skip to main content Skip to site footer

Vol. 20 No. 1 (2021)

Articles

Effect of the cereal aphid infestation on the oxidative damages of protein in the maize (Zea mays L.)

DOI: https://doi.org/10.24326/asphc.2021.1.10
Submitted: May 21, 2019
Published: 2021-02-26

Abstract

We studied the effect of the cereal aphid (the bird cherry-oat aphid Rhopalosiphum padi L. and grain aphid Sitobion avenae F.) infestations on the oxidative damages of protein in the maize (Zea mays L., cultivar Touran) seedlings. We found that the content of protein thiols and protein bound carbonyls were dependent from study factors: time of feeding, the number of aphids and species. In relation to uninfested plants (control), prolonged insect (R. padi and S. avenae) feeding (24–96 h post infestations) was linked to depletion in levels of protein thiols in foliar tissues of maize genotype and accumulation after 96 h post infestations in maize seedlings investigated by higher number of aphids, protein bound carbonyls. Our results indicated that the biotic stress factors, including aphids evoke the oxidation of protein in the maize. The stronger protein damages occurred in the maize seedlings infested with oligophagous R .padi females.

References

Aly, A.A., Mohamed A.A. (2012). The impact of copper ion on growth, thiol compound and lipid peroxidation in two maize cultivars (Zea mays L.) grown in vitro. Aust. J. Crop. Sci, 6, 541-549.
Anstead, J., Samuel, P., Song, N., Wu, Ch., Thompson, G.A., Goggin, F. (2010). Activation of ethylene-related genes in response to aphid feeding on resistant and susceptible melon andtomato plants. Entomol. Exp. Appl., 134, 170-181. DOI:10.1111/j.1570-7458.2009.00945.x
Bereś, P.K. (2015). The occurrence of aphids on sweet maize in south-eastern Poland. Acta Sci. Pol. Hortorum Cultus, 14, 39–54.
Bhoomika, K., Pyngrope, S., Dubey, R.S. (2014). Effect of aluminum on protein oxidation, non-protein thiols and protease activity in seedlings of rice cultivars differing in aluminum tolerance. J. Plant Physiol., 171, 497-508. https://doi.org/10.1016/j.jplph.2013.12.009
Bradford, M.M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254.
Divol, F., Vilaine, F., Thibivilliers, S., Amselem, J., Palauqui, J.C., Kusiak, C., Dinant, S. (2005). Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Mol. Biol., 57, 517-540. DOI 10.1007/s11103-005-0338-z
Dworak, A., Nykiel, M., Walczak, B., Miazek, A., Szworst-Łupina, D., Zagdańska, B., Kiełkiewicz, M. (2016). Maize proteomic responses to separate or overlapping soil drought and two-spotted spiker mite stresses. Planta, 244, 939-960. DOI: 10.1007/s00425-016-2559-6
Ferriol, I., Rubio, L., Pérez-Panadés, J., Carbonell, A., Davino, S., Belliure, B. (2013). Transmissibility of Broad bean wilt virus 1 by aphids: influence of virus accumulation in plants, virus genotype and aphid species. Ann. Appl. Biol., 162, 71–79. DOI:10.1111/j.1744-7348.2012.00579.x
Gietler, M., Nykiel, M., Zagdańska, B. (2016). Changes in the reduction state of ascorbate and glutathione, protein oxidation and hydrolysis leading to the development of dehydration intolerance in Triticum aestivum L. seedlings. Plant Growth Regul., 79, 287-297. DOI: 10.1007/s10725-015-0133-z
Grimsrud, P.A., Xie, H., Griffin, T.J., Bernlohr, D.A. (2008). Oxidative stress and covalent modification of protein with bioactive aldehydes. J. Biol. Chem., 283, 21837-21841. DOI 10.1074/jbc.R700019200
Higashi, Ch., Bressan, A. (2012). Influence of a propagative plant virus on the fitness and wing dimorphism of infected and exposed insect vectors. Oecologia, 172, 847–856. DOI: 10.1007/s00442-012-2540-4
Juszczuk, I. M. Tybura, A., Rychter, A. M. (2008). Protein oxidation in the leaves and roots of cucumber plants (Cucumis sativum L.) mutant MSC16 and wild type. J. Plant Physiol., 165, 355-365. DOI:10.1016/j.jplph.2007.06.021
Kaur, G., Kaur, S., Singh, H.P., Batish, D.R., Kohli, R.K., Rishi, V. (2015). Biochemical adaptations in Zea mays roots to short-term Pb2+ exposure: ROS generation and metabolism. Bull. Environ. Contam. Toxicol., 95, 246-253. DOI: 10.1007/s00128-015-1564-y
Kaur, P., Bali, S., Sharma, A., Vig, A.P., Bhardwaj, R. (2018). Role of earthworms in phytoremediation of cadmium (Cd) by modulating the antioxidative potential of Brassica juncea L. Appl. Soil Ecol., 124, 306-316. https://doi.org/10.1016/j.apsoil.2017.11.017
de Kok, L.J., Kuiper, P.J.C. (1986). Effect of short-term dark incubation with sulfate, chloride and selenate on the glutathione content of spinach leaf discs. Physiol. Plant., 68, 477-482. https://doi.org/10.1111/j.1399-3054.1986.tb03385.x
Krawczyk, A., Hurej, M., Sobota, G. (2006). Aphids and their natural enemies occurring on maize in Opole province. Aphids and Other Homopterous Insects, 12, 127–137.
Levine, R.L., Williams, J.A., Stadtman, E.R., Shacter, E. (1994). Carbonyl assays for determination of oxidatively modified proteins. Method Enzymol., 233, 346-357. https://doi.org/10.1016/S0076-6879(94)33040-9
Mai, V.C.H., Bednarski, W., Borowiak-Sobkowiak, B., Wilkaniec, B., Samardakiewicz, S., Morkunas, I. (2013). Oxidative stress in pea seedling leaves in response to Acyrtosiphon pisum infestation. Phytochemistry, 93, 49-62. https://doi.org/10.1016/j.phytochem.2013.02.011
Maiti, S., Ghosh, N., Mandal, C., Das, K., Dey, N., Adk, M.K. (2012). Responses of the maize plant to chromium stress with reference to antioxidation activity. Braz. J. Plant Physiol., 24, 203-212. http://dx.doi.org/10.1590/S1677-04202012000300007
Pyngrope, S., Kumari, B., Dubey, R.S. (2013). Oxidative stress, protein carbonylation, proteolysis and antioxidative defense system as a model for depicting water deficit tolerance in indica rice seedlings. Plant Growth Regul., 69, 149-165.
https://doi.org/10.1007/s10725-012-9758-3
Reddy, K.R., Henry, W.B., Seepaul, R., Lokhande, S., Gajanayake, B., Brand, D. (2013). Exogenous application of glycinebetaine facilitates maize (Zea mays L.) growth under water deficit conditions. Am. J. Exp. Agric., 3, 1–13.
Rinalducci, S., Murgiano, L., Zolla L. (2008). Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J. Exp. Bot., 59, 3781-3801. DOI:10.1093/jxb/ern252.
Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot., vol. 2012, 1-26, DOI:10.1155/2012/217037.
Statsoft Inc. 92012). Statistica, data analysis software system, version 10.0. www.statsoft.com.
Stewart, L.R., Bouchard, R., Redinbaugh, M.G., Meulia, T. (2012). Complete sequence and development of a full-length infectious clone of an Ohio isolate of maize dwarf mosaic virus (MDMV). Virus Res., 165, 219–224. https://doi.org/10.1016/j.virusres.2012.02.004
Strażyński, P. (2008). Aphid fauna (Hemiptera, Aphidoidea) on maize crops in Wielkopolska – species composition and increase in number. Aphids and Other Homopterous Insects, 14, 123–128.
Sytykiewicz, H. (2014). Differential expression of superoxide dismutase genes within aphid-stressed maize (Zea mays L.) seedlings. PLoS One, 9 (4), e94847. DOI:10.1371/journal.pone.0094847.
Sytykiewicz, H. (2015). Transcriptional responses of catalase genes in maize seedlings exposed to cereal aphids' herbivory. Biochem. Syst. Ecol., 60, 131-142. https://doi.org/10.1016/j.bse.2015.04.015
Sytykiewicz, H. (2016). Expression patterns of genes involved in ascorbate-glutathione cycle in aphid-infested maize (Zea mays L.) seedlings. Int. J. Mol. Sci., 17, 268. DOI: 10.3390/ijms17030268.
Sytykiewicz, H., Chrzanowski, G., Czerniewicz, P., Sprawka, I., Łukasik, I., Goławska, S., Sempruch, C. (2014). Expression profiling of selected glutathione transferase genes in Zea mays (L.) seedlings infested with cereal aphids. - PLoS One, 9(11), e111863. DOI:10.1371/journal.pone.0111863.
Zagorchev, L., Terzieva, M., Stoichkova, M., Odjakova, M. (2014). Changes in protein thiols in response to salt stress in embryogenic suspension cultures of Dactylis glomerata L. - Biotechnol. Biotechnol. Equip., 28, 616-621. https://doi.org/10.1080/13102818.2014.946798.

Downloads

Download data is not yet available.

Similar Articles

<< < 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.