Skip to main navigation menu Skip to main content Skip to site footer

Vol. 19 No. 1 (2020)

Articles

ASSESSMENT OF PHYSIOLOGICAL AND MORPHOLOGICAL TRAITS OF PLANTS OF THE GENUS Fragaria UNDER CONDITIONS OF WATER DEFICIT – A STUDY REVIEW

DOI: https://doi.org/10.24326/asphc.2020.1.3
Submitted: February 5, 2020
Published: 2020-02-21

Abstract

The genus Fragaria belongs to the Rosaceae family. The most popular representatives of this species are the strawberry (Fragaria × ananassa Duch.) and wild strawberry (Fragaria vesca L.), whose taste and health benefits are appreciated by a huge number of consumers. The cultivation of Fragaria plants is widespread around the world, with particular emphasis on the temperate climate zone. Increasingly occurring weather anomalies, including drought phenomena, cause immense losses in crop cultivation. The Fragaria plant species are very sensitive to drought, due to the shallow root system, large leaf area and the high water content of the fruit. There have been many studies on the influence of water deficit on the morphological, biochemical and physiological features of strawberries and wild strawberries. There is a lack of research summarizing the current state of knowledge regarding of specific species response to water stress. The aim of this study was to combine and compare data from many research carried out and indicate the direction of future research aimed at improving the resistance of Fragaria plants species to stress related to drought. These plants show patterns of response to stress caused by drought, such as: osmotic adjustment, reduction of transpiration and photosynthesis, and increased efficiency of water use. Drought also causes significant changes in the composition and palatability of the fruit of the Fragaria plant species.

References

  1. Alpert, P. (1999). Clonal integration in Fragaria chiloensis differs between populations: ramets from grassland are selfish. Oecologia, 120, 69–76.
  2. Alpert, P., Mooney, H.A. (1986). Resource sharing among ramets in the clonal herb, Fragaria chiloensis. Oecologia, 70, 227–233.
  3. Arfan, M., Athar, H.R., Ashraf, M. (2007). Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress. J. Plant Physiol., 6(4), 685–694. DOI: 10.1016/j.jplph.2006.05.010
  4. Ashraf, M., Akram, N.A. (2009). Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol. Adv., 27, 744–752. DOI: 10.1016/j.biotechadv.2009.05.026
  5. Battipaglia, G., De Micco, V., Brand, W.A., Saurer, M., Aronne, G., Linke, P., Cherubini, P. (2014). Drought impact on water use efficiency and intra‐annual density fluctuations in Erica arborea on Elba (Italy). Plant Cell Environ., 37(2), 382–391. DOI: 10.1111/pce.12160
  6. Bertamini, M., Zulini, L., Muthuchelian, K., Nedunchezhian, N. (2006). Effect of water deficit on photosynthetic and other physiological responses in grapevine (Vitis vinifera L. cv. ‘Riesling’) plants. Photosynthetica, 44(1), 151–154. DOI: 10.1007/s11099-005-0173-0
  7. Bewley, J.D., Krochko, J.E. (1982). Desiccation-tolerance. In: Physiological plant ecology II. Water relations and carbon assimilation, Lange, O.L., Nobel, P.S., Osmond C.B., Ziegler H. (eds.). Springer-Verlag, Berlin–Heidelberg–New York, 325–378.
  8. Blanke, M.M., Cooke, D.T. (2002). Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves. Plant Growth Regul., 42, 153–160. DOI: 10.1023/B:GROW.0000017489.21970.d4
  9. Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res., 56(11), 1159–1168. DOI: 10.1071/AR05069
  10. Blum, A. (2011). Plant water relations, plant stress and plant production. In: Plant breeding for water-limited environments, Blum, A. Springer, New York, 11–52.
  11. Boczoń, A., Wróbel, M. (2015). The influence of drought on the water uptake by Scots pines (Pinus sylvestris L.) at different positions in the tree stand. For. Res. Pap., 76(4), 370–376 [in English and Polish]. DOI: 10.1515/frp-2015-0036
  12. Boguszewska, D. (2007). Changes of chemical compounds in potato tubers under drought conditions. Żywn. Nauka Technol. Jakość, 5(54), 93–101.
  13. Borowicz, V.A. (2010). The impact of arbuscular mycorrhizal fungi on strawberry tolerance to root damage and drought stress. Pedobiologia, 53, 265–270. DOI: 10.1016/j.pedobi.2010.01.001
  14. Bota, J., Flexas, J., Medrano, H. (2001). Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Ann. Appl. Biol. 138, 353–361.
  15. Caulet, R.-P., Gradinariu, G., Iurea, D., Morariu, A. (2014). Influence of furostanol glycosides treatments on straw-berry (Fragaria × ananassa Duch.) growth and photosynthetic characteristics under drought conditions. Sci. Hortic. 169, 179–188. DOI: 10.1016/j.scienta.2014.02.031
  16. Chandler, C.K., Ferree, D.C. (1990). Response of ‘Raritan’ and ‘Surecrop’ strawberry plants to drought stress. Fruit Varietes J., 44, 183–185.
  17. Chaves, M.M., Maroco, J.P., Pereira, J.S. (2003). Understanding plant responses to drought – from genes to the whole plant. Funct. Plant Biol., 30, 239 –264. DOI: 10.1071/FP02076
  18. Chmura, K., Chylińska, E., Dmowski, Z., Nowak L. (2009). Role of the water factor in yield formation of chosen field crops. Infrastruct. Ecol. Rural Areas, 9, 33–44.
  19. Cui, Y., Tian, Z., Zhang, X., Muhammad, A., Han, H., Jiang, D., Cao, W., Dai, T. (2015). Effect of water deficit during vegetative growth periods on post-anthesis photosynthetic capacity and grain yield in winter wheat (Triticum aestivum L.). Acta Physiol. Plant., 37, 196. DOI: 10.1007/s11738-015-1944-2
  20. Doroszewski, A., Jadczyszyn, J., Kozyra, J., Pudełko, R., Stuczyński, T., Mizak, K., Łopatka, A., Koza, P., Górski, T., Wróblewska, E. (2012). The basics of agricultural drought monitoring system. Water Environ. Rural Areas, 2(38), 77–91.
  21. Ghaderi, N., Normohammadi, S., Javadi, T. (2015). Morpho-physiological responses of strawberry (Fragaria × ananassa) to exogenous salicylic acid application under drought stress. J. Agric. Sci. Technol. 17, 167–178.
  22. Ghaderi, N., Siosemardeh, A. (2011) Response to drought stress of two strawberry cultivars (cv. Kurdistan and Selva). Hortic. Environ. Biotechnol., 52(1), 6–12. DOI: 10.1007/s13580-011-0019-6
  23. Giannina, V., Orietta, L., Guglielmo, C. (1997). Growth and ABA content of strawberry as influenced by root restriction. Acta Hortic., 463, 135–140.
  24. Giné-Bordonaba, J., Terry, L.A. (2010). Manipulating the taste-related composition of strawberry fruits (Fragaria × ananassa) from different cultivars using deficit irrigation. Food Chem., 12, 1020–1026. DOI: 10.1016/j.foodchem.2010.03.060
  25. Giné-Bordonaba, J., Terry, L.A. (2016). Effect of deficit irrigation and methyl jasmonate application on the compo-sition of strawberry (Fragaria × ananassa) fruit and leaves. Sci. Hortic., 199, 63–70. DOI: 10.1016/j.scienta.2015.12.026
  26. Grant, O.M., Davies, M.J., James, C.M., Johnson, A.W., Leinonen, I., Simpson, D.W. (2012a). Thermal imaging and carbon isotope composition indicate variation amongst strawberry (Fragaria × ananassa) cultivars in stomatal conductance and water use efficiency. Environ. Exp. Bot., 76, 7–15. DOI: 10.1016/j.envexpbot.2011.09.013
  27. Grant, O.M., Davies, M.J., Johnson, A.W., Simpson, D.W. (2012b). Physiological and growth responses to water deficits in cultivated strawberry (Fragaria × ananassa) and in one of its progenitors, Fragaria chiloensis. Environ. Exp. Bot., 83, 23–32. DOI: 10.1016/j.envexpbot.2012.04.004
  28. Grant, O.M., Johnson, A.W., Davies, M.J., James, C.M., Simpson, D.W. (2010). Physiological and morphological diversity of cultivated strawberry (Fragaria × ananassa) in response to water deficit. Environ. Exp. Bot. 68, 264–272. DOI: 10.1016/j.envexpbot.2010.01.008
  29. Grzebisz, W., Musolf, R. (1999). Wpływ stresu potasowego i symulowanego stresu wodnego w fazie wzrostu wydłużeniowego na plon i pobranie składników pokarmowych przez rzepak jary [Influence of potassium stress and simulated water stress during prolongation stage of growth on the yield and nutrient uptake by spring rape]. Rośl. Oleiste, 20, 495–502 [in Polish].
  30. Hamdan, M.N., Shafar, J.M. (2017). Effect of water irrigation techniques on growth and yield of rock melon (Cucumis melo Linn cv. Glamour). Adv. Plant Sci. Tech., 24, 80–84.
  31. Hassanein, R.A., Hassanein, A.A., Eldin, A.B., Salama, M., Hashem, H.A. (2009). Role of jasmonic acid and abscisic acid treatments in alleviating the adverse effects of drought stress and regulating trypsin inhibitor production in soybean plant. Aust. J. Basic. Appl. Sci., 3, 904–919.
  32. Hayat, Q., Hayat, S., Irfan, M., Ahmad, A. (2010). Effect of Exogenous Salicylic Acid under Changing Environment: A review. Environ. Exp. Bot., 68, 14–25. DOI: 10.1016/j.envexpbot.2009.08.005
  33. Hetherington, A.M., Woodward, F.I. (2003). The role of stomata in sensing and driving environmental changes. Nature, 424, 901–908. DOI: 10.1038/nature01843
  34. Hisdal, H., Tallaksen, L.M., Peters, E., Stahl, K., Zaidman, M. (2000). Drought event definition. ARIDE Technical Rep., 6, 15.
  35. Hsiao, T.C. (1973). Plant responses to water stress. Annu. Rev. Plant Physiol., 24, 519–70.
  36. Huffaker, R.C., Radin, T., Kleinkopf, G.E., Cox, E.L. (1970). Effect of mild water stress on enzymes of nitrate assimilation and of the carboxylative phase of photosynthesis in barley. Crop Sci., 10, 471–474.
  37. Jakubowski, T. (2009). Reaction of potato plants irradiated with microwaves to simulated drought stress. Agric. Eng., 8(117), 15–21.
  38. Jaleel, C.A., Gopi, R., Sankar, B., Manivannan, P., Kishorekumar, A., Sridharan, R., Panneerselvam, R. (2007). Alterations in germination, seedling vigour lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. S. Afr. J. Bot., 73, 190–195.
  39. Jensen, N.L., Jensen, C.R., Liu, F. (2009). Water relations and abscisic acid in pot-grown strawberry plants under limited irrigation. J. Am. Soc. Hortic. Sci., 134(5), 574–580.
  40. Kacperska, A. (2015). Responses to abiotic factors. In: Fizjologia roślin [Plant Physiology], Kopcewicz, J., Lewak, S. (eds.). Wyd. Nauk. PWN, Warszawa, 634–708 [in Polish].
  41. Kaiser, W.M., Kaiser, G., Schöner, S., Neimanis, S. (1981). Photosynthesis under osmotic stress. Differential recovery of photosynthetic activities of stroma enzymes, intact chloroplasts, and leaf slices after exposure to high solute concentrations. Planta, 153, 430–435.
  42. Karlidag, H., Yildirim, E., Turan, M. (2009). Salicylic Acid Ameliorates the Adverse Effect of Salt Stress on Straw-berry. Sci. Agric., 66(2), 180–187. DOI: 10.1590/S0103-90162009000200006
  43. Karthikeyan, B., Jaleel, C.A., Gopi, R., Deiveekasundaram, M. (2007). Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs. J. Zhejiang Univ. Sci., B8, 453–457.
  44. Kędziora, A., Kępińska-Kasprzak, M., Kowalczyk, P., Kundzewicz, Z.W., Miler, A.T., Pierzgalski, E., Tokarczyk, T. (2014). Water shortage-related threats. Water Manag., 10, 373–376.
  45. Klamkowski, K., Treder, K. (2011). Wpływ deficytu wody na wymianę gazową liści, wzrost i plonowanie dwóch odmian truskawki uprawianych pod osłonami [Effect of water deficit on gas exchange parameters, growth and yield of two strawberry cultivars grown under greenhouse conditions]. Infrastruct. Ecol. Rural Areas, 5, 105–113 [in Polish].
  46. Klamkowski, K., Treder, W. (2006). Morphological and physiological responses of strawberry plants to water stress. Agric. Conspec. Sci., 71(4), 159–165.
  47. Klamkowski, K., Treder, W. (2008). Response to drought stress of three strawberry cultivars grown under greenhouse conditions. J. Fruit Ornam. Plant Res., 16, 179–188.
  48. Klamkowski, K., Treder, W., Orlikowska, T. (2015a). Effect of long-lasting water deficyt on selected physiological parameters of three raspberry cultivars. Infrastruct. Ecol. Rural Areas 3(1), 603–311 [in Polish].
  49. Klamkowski, K., Treder, W., Sowik, I., Tryngiel-Gać, A., Masny, A. (2013). Comparison of response of three strawberry cultivars grown under greenhouse conditions to water deficiency. Infrastruct. Ecol. Rural Areas 2(1), 137–146.
  50. Klamkowski, K., Treder, W., Tryngiel-Gać., A. (2006). The effects of substrate moisture content on water potential, gas exchange rates, growth and yield in strawberry plants grown under greenhouse conditions. J. Fruit Ornam. Plant Res., 14, 163–171.
  51. Klamkowski, K., Treder, W., Wójcik, K. (2015b). Effects of long-term water stress on leaf gas exchange, growth and yield of three strawberry cultivars. Acta Sci. Pol. Hortorum Cultus, 14(6), 55–65.
  52. Koszański, Z., Rumasz-Rudnicka E., Podsiadło, C. (2006). Wpływ nawadniania kroplowego i nawożenia mineralnego na jakość owoców truskawki [Influence of drip irrigation and mineral fertilization on the quality of strawberry fruit]. J. Elementol., 11(1), 21–27 [in Polish].
  53. Koszański, Z., Rumasz-Rudnicka, E. (2008). Ocena efektów nawadniania kroplowego borówki wysokiej [Reaction of raspberry on varied nitrogen fertilization and drop irrigation]. Agric. Eng., 4(102), 415–422 [in Polish].
  54. Łabędzki, L. (2004). Problematyka susz w Polsce [Drought problems in Poland]. Water Env. Rural Areas, 1(10), 47–66 [in Polish].
  55. Łabędzki, L. (2006). Susze rolnicze. Zarys problematyki oraz metody monitorowania i klasyfikacji [Agricultural droughts. An outline of problems and methods of monitoring and classification]. Water Env. Rural Areas, Treatises Monogr., 17, 107 [in Polish].
  56. Łabędzki, L., Bąk, B. (2015). Method of indicator-based assessment and classification of soil moisture on permanent grassland in Poland. Infrastruc. Ecol. Rural Areas, 3(1), 515–531.
  57. Li, H., Li, T., Gordon, R.J., Asiedu, S.K., Hu, K. (2010). Strawberry plant fruiting efficiency and its correlation with solar irradiance, temperature and reflectance water index variation. Environ. Exp. Bot., 68, 165–174. DOI: 10.1016/j.envexpbot.2009.12.001
  58. Liu, F. Savic, S., Jensen, C.R., Shahnazari, A., Jacobsen, S.E., Stikic, R., Andersen, M.N. (2007). Water relations and yield of lysimetergrown strawberries under limited irrigation. Sci. Hortic., 111, 128–132. DOI: 10.1016/j.scienta.2006.10.006
  59. Liu, F., Stützel, H. (2004). Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Sci. Hortic., 102(1), 15–27. DOI: 10.1016/j.scienta.2003.11.014
  60. Lynch, J., Brown, K.M. (1997). Ethylene and plant responses to nutritional stress. Physiol. Plant., 100, 613–619.
  61. Makosz, E. (2007). Szanse rozwoju polskiego sadownictwa. Plantpress, Kraków, pp. 137.
  62. Martinez-Ferri, E., Soria, C., Ariza, M.T., Medina, J.J., Miranda, L., Domiguez, P., Muriel, J.L. (2016). Water relations, growth and physiological response of seven strawberry cultivars (Fragaria × ananassa Duch.) to different water availability. Agric. Water Manag., 164, 73–82. DOI: 10.1016/j.agwat.2015.08.014
  63. McDonald, S.S., Archbold, D.D. (1998). Membrane competence among and within Fragaria species varies in response to dehydration stress. J. Amer. Soc. Hort. Sci., 123(5), 808–813.
  64. Morgan, J.M. (1984). Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol., 35, 299–319.
  65. Ögren, E. (1990). Evaluation of chlorophyll fluorescence as a probe for drought stress in willow leaves. Plant Physiol., 93, 1280–1285. DOI: 10.1104/pp.93.4.1280
  66. Olszewska, M. (2003). Reakcja wybranych odmian kostrzewy łąkowej i tymotki łąkowej na stres wodny [Reaction of selected meadow fescue and Timothy cultivars to water stress]. Acta Sci. Pol., Agricultura, 2(2), 141–148 [in Polish].
  67. Olszewska, M. (2004). Reakcja koniczyny białej uprawianej na dwóch typach gleb na stres wodny [Reaction of white clover grown on two types of soil to water stress]. Acta Sci. Pol., Agricultura, 3(2), 203–213 [in Polish].
  68. Olszewska, M. (2009). Reakcja odmian kostrzewy łąkowej (Festuca pratensis Huds.) i tymotki łąkowej (Phleum pratense L.) uprawianych na glebie organicznej na niedobór wody [Response of cultivars of meadow fescue (Festuca pratensis Huds.) and timothy (Phleum pratense L.) grown on organic soil to moisture deficiency]. Acta Sci. Pol., Agricultura, 8(1), 37–46 [in Polish].
  69. Olszewska, M., Grzegorczyk, S. (2013). Oddziaływanie stresu wodnego na wybrane gatunki traw uprawianych na glebie organicznej [The effect of water stress on selected grass species grown in organic soils]. Fragm. Agron., 30(3), 140–147 [in Polish].
  70. Olszewska, M., Grzegorczyk, S., Olszewski, J., Bałuch-Małecka, A. (2010). Porównanie reakcji wybranych gatunków traw na stres wodny [A comparison of the response of selected grass species to water stress]. Grassland Sci. Pol., 13, 127–136 [in Polish].
  71. Olszewski, J., Pszczółkowska, A., Kulik, T., Fordoński, G., Płodzień, K., Okorski, A., Wasilewska, J. (2008). Rate of photosynthesis and transpiration of winter wheat leaves and ears under water deficit conditions. Pol. J. Natural Sci., 23(2), 326–335.
  72. O’Neill, S.D. (1983). Role of Osmotic potential gradients during water stress and leaf senescence in Fragaria virginiana. Plant Physiol., 72, 931–937. DOI: 10.1104/pp.72.4.931
  73. Pereyra-Irujo, G.A., Velázquez, L., Lechner, L., Aguirrezábal, L.A. (2008). Genetic variability for leaf growth rate and duration under water deficit in sunflower: analysis of responses at cell, organ, and plant level. J. Exp. Bot., 59(8), 2221–2232. DOI: 10.1093/jxb/em087
  74. Pirker, K.F., Goodman, B.A., Pascual, E.C., Kiefer, S., Soja, G., Reichenauer, T.G. (2002). Free radicals in the fruit of three strawberry cultivars exposed to drought stress in the field. Plant Physiol. Biochem., 40, 709–717. DOI: 10.1016/S0981-9428(02)01412-2
  75. Plant production results in 2016. Central Statistical Office of Poland, Agriculture Department, Warszawa 2017.
  76. Podleśny, J., Podleśna, A. (2003) The effect of different levels of soil moisture on development and yielding of two different genotypes of white lupine (Lupinus albus L.)). Biul. IHAR, 228, 315–322 [in Polish].
  77. Qayyum, A., Razzaq, A., Bibi, Y., Khan, S.U., Abbasi, K.S., Sher, A., Mehmood, A., Ahmed, W., Mahmood, I., Manaf, A., Khan, A., Farid, A., Jenks, M.A. (2017). Water stress effects on biochemical traits and antioxidant activities of wheat (Triticum aestivum L.) under in vitro conditions. Acta Agric. Scand. B Soil Plant Sci., 68(4), 283-290. DOI: 10.1080/09064710.2017.1395064
  78. Rane, J.M., Maheshwari, S.N. (2001). Effect of preanthesis water stress on growth, photosynthesis and yield of six wheat cultivars differing in drought tolerance. Indian J. Plant Physiol., 6, 53–60.
  79. Razavi, F. Keyser, E.D., Riek, J.D., Labeke, M.C.V. (2011). A method for testing drought tolerance in Fragaria based on fast screening for water deficit response and use of associated AFLP and EST candidate gene markers. Euphytica, 180, 385–409. DOI: 10.1007/s10681-011-0398-x
  80. Razavi, F., Pollet, B., Steppe, K., Labeke, M.C.V. (2008). Chlorophyll fluorescence as a tool for evaluation of drought stress in strawberry. Photosynthetica, 46, 631–633. DOI: 10.1007/s11099-008-0108-7
  81. Reymond, M., Muller, B., Leonardi, A., Charcosset, A., Tardieu, F. (2003). Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol., 131(2), 664–675. DOI: 10.1104/pp.013839
  82. Reynolds, M.P., Pask, A.J.D., Mullan, D. (eds.). (2012) Physiological breeding I: Interdisciplinary approaches to improve crop adaptation. CIMMYT, Mexico, pp. 174.
  83. Robinson-Boyer, L., Brain, P., Xu, X.-M., Jeffries, P. (2015). Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza, 25, 215–227. DOI: 10.1007/s00572-014-0603-6
  84. Roiloa, S.R., Retuerto, R. (2007). Responses of the clonal Fragaria vesca to microtopographic heterogenity under different water and light conditions. Env. Exp. Bot., 61, 1–9. DOI: 10.1016/j.envexpbot.2007.02.006
  85. Rumasz-Rudnicka, E. (2010). Influence of irrigation and nitrogen fertilizer on assimilation and transpiration of westworlds reygrass. Acta Agrophys., 15(2), 395–408 [in Polish].
  86. Sarker, B.C., Hara, M., Uemura, M. (2005). Proline synthesis, physiological responses and biomass yield of egg-plants during and after repetitive soil moisture stress. Sci. Hortic., 103, 387–402. DOI: 10.1016/j.scienta.2004.07.010
  87. Savé, R., Peñuelas, J., Marfà, O., Serrano, L. (1993). Changes in leaf osmotic and elastic properties and canopy structure of strawberries under mild water stress. Hortscience, 28(9), 925–927.
  88. Savini, G., Giorgi, V., Scarano, E., Neri, D. (2008). Strawberry plant relationship through the stolon. Physiol. Plant., 134, 421–429. DOI: 10.1111/j.1399-3054.2008.01145.x
  89. Serrano, L., Carbonell, X., Savé, R., Marfà, O., Peñuelas, J. (1992). Effects of irrigation regimes on the yield and water use of strawberry. Irrig. Sci., 13, 45–48.
  90. Shao, H.-B., Bu, L.-Y., Jaleel, C.A., Zhao, C.-X. (2008). Water-deficit stress-induced anatomical changes in higher plants. C. R. Biol., 331(3), 215–225. DOI: 10.1016/j.crvi.2008.01.002
  91. Sinclair, T.R., Ludlow, M.M. (1986). Influence of soil water supply on the plant water balance of four tropical grain legumes. Aust. J. Plant Physiol., 13, 329–341.
  92. Sruamsiri, P., Lenz, F. (1986). Photosynthese und stomatäres Verhalten bei Erdbeeren (Fragaria × ananassa Duch.). VI. Einfl uß von Wassermangel. Gartenbauwissenschaft, 51, 84–92.
  93. Starck, Z., Chołuj, D., Niemyska, B. (1995). Fizjologiczne reakcje roślin na niekorzystne czynniki środowiska. Wyd. SGGW, Warszawa, 27–47.
  94. Suchocka, M. (2011). Influence of natural environment changes on the urban forest vitality on construction site. Human Env., 35(1–2), 73–91 [in Polish].
  95. Sun, C., Li, X., Hu, Y., Zhao, P., Xu, T., Sun, J., Gao, X. (2015). Proline, sugars, and antioxidant enzymes respond to drought stress in the leaves of strawberry plants. Kor. J. Hort. Sci. Technol., 33(5), 625–632. DOI: 10.7235/hort.2015.15054
  96. Terry, L.A., Chope, G.A., Giné-Bordonaba, J. (2007). Effect of water deficit irrigation and inoculation with Botrytis cinerea on strawberry (Fragaria × ananassa) fruit quality. J. Agric. Food Chem., 55(26), 10812–10819. DOI: 10.1021/jf072101n
  97. Tezara, W., Mitchall, V., Driscoll, S.P., Lawlor, D.W. (2002). Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. J. Exp. Bot., 375, 1781–1791. DOI: 10.1093/jxb/erf021
  98. Tokarczyk, T. (2008). Wskaźniki oceny suszy stosowane w Polsce i na świecie [Applied indices for drought assessment and Polish application]. Infrastruc. Ecol. Rural Areas, 7, 167–182 [in Polish].
  99. Tourneux, C., Peltier, G. (1995). Effect of water deficit on photosynthetic oxygen exchange measured using 18O2 and mass spectrometry in Solanum tuberosum L. leaf discs. Planta, 195, 570–577.
  100. Treder, W., Wójcik, K., Tryngiel-Grać, A., Krzewińska, D., Klamkowski, K. (2011). Development of irrigation of orchard plants reflected by survey investigations. Infrastruc. Ecol. Rural Areas, 5, 61–69.
  101. Vun Der Zanden, A.M., Cameron, J.S. (1996). Effect of water deficit stress on 11 native Fragaria chiloensis clones selected as ornamental groundcovers. Sci. Hortic., 66, 241–253. DOI: 10.1016/S0304-4238(96)00913-2
  102. Wang, L.J., Fan, L., Loescher, W., Duan, W., Liu, G.J., Cheng, J.S., Luo, B. and Li, H. (2010). Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol., 10, 34. DOI: 10.1186/1471-2229-10-34
  103. Wang, S.Y. (1999). Methyl jasmonate reduces water stress in strawberry. Plant Growth Regul., 18, 127–134. DOI: 10.1007/PL00007060
  104. Weber, N., Zupanc, V., Jakopic, J., Veberic R., Mikulic-Petkovsek, M., Stampar F. (2016). Influence of deficit irrigation on strawberry (Fragaria × ananassa Duch.) fruit quality. J. Sci. Food Agric., 97, 849–857. DOI: 10.1002/jsfa.7806
  105. Weber, N., Zupanc, V., Jakopic, J., Veberic, R., Mikulic-Petkovsek, M., Stampar, F. (2017). Influence of deficit irrigation on strawberry (Fragaria × ananassa Duch.) fruit quality. J. Sci. Food Agric., 97, 849–857. DOI: 10.1002/jsfa.7806
  106. Wyka, T. (2010). Stres niedoboru wody. In: Reakcje komórek roślin na czynniki stresowe, vol. 2, Woźny, A., Goździcka-Józefiak, A. (eds.). Uniwersytet im. Adama Mickiewicza w Poznaniu, 33–58.
  107. Yin, B., Wang, Y., Liu, P., Hu, J., Zhen, W. (2010). Effects of vesicular-arbuscular mycorrhiza on the protective system in strawberry leaves under drought stress. Front. Agric. China, 4(2), 165–169. DOI: 10.1007/s11703-010-0109-8
  108. Yuan, B.Z., Sun, J., Nishiyama, S. (2004). Effect of drip irrigation on strawberry growth and yield inside a plastic greenhouse. Biosyst. Eng., 87(2), 237–245. DOI: 10.1016/j.biosystemseng.2003.10.014
  109. Zhang, B., Archbold, D.D. (1993a). Water relations of Fragaria chiloensis and a F. virginiana selection during and after water deficit stress. J. Am. Sot. Hortic. Sci., 118, 274–279.
  110. Zhang, B., Archbold, D.D. (1993b). Solute accumulation in leaves of a Fragaria chiloensis and a F. virginiana selection responds to water deficit stress. J. Amer. Soc. Hort. Sci., 118(2), 280–285.
  111. Zhang, Y., Zhang, Q., Sammul, M. (2011). Physiological integration ameliorates negative effects of drought stress in the clonal herb Fragaria orientalis. PLoS ONE, 7(9), e44221. DOI: 10.1371/journal.pone.0044221
  112. Zhang, Y.C., Zhang, Q.Y., Luo, P., Wu, N. (2009). Photosynthetic response of Fragaria orientalis in different water contrast clonal integration. Ecol. Res., 24, 617–625. DOI: 10.1007/s11284-008-0533-x
  113. Zhang, Y.C., Zhang, Q.Y., Yirdaw, E., Luo, P., Wu, N. (2008). Clonal integration of Fragaria orientalis driven by contrasting water availability between adjacent patches. Bot. Stud., 49, 373–383.
  114. Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol., 53, 247–273.

Downloads

Download data is not yet available.

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.