Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 1 (2022)

Articles

The effect of cover crops on soil moisture in ploughless and traditional tillage in the cultivation of carrot

DOI: https://doi.org/10.24326/asphc.2022.1.2
Submitted: September 28, 2020
Published: 2022-02-28

Abstract

In a view of the predicted drought that has appeared in recent years and water shortage in the growing season, which is getting worse every year, the problem of water retention in the soil and increasing its humidity becomes of exceptional importance. The field experiment was carried out in 2009–2012 on grey brown podzolic soil developed from loess formations covering the cretaceous marls with a granulometric composition corresponding to medium dusty loam. The aim of the study was to assess the impact of various species of cover crops and the method and date of mixing their biomass with the soil on the soil moisture in ploughless carrot cultivation. The experimental design included seven cover crop species (spring rye, common oat, common vetch, white mustard, lacy phacelia, buckwheat, fodder sunflower) and six kinds of soil tillage. The effect of cover crops and tillage on soil moisture was modified by the course of the weather and varied depending on the year of research, sampling date and soil layer. In spring, the highest layer of soil (0–20 cm) not cultivated before winter (NTz) accumulated the most water, and the least after pre-winter ploughing (Oz). In the 0–40 cm layer, the lowest humidity was in the soil ploughed before winter (Oz), and the highest after no-till (NTz) and after subsoiling before winter (GLz). The ridge cultivation performed in the spring caused the soil to dry out. In the remaining variants of no-ploughing tillage, soil moisture in the 0–40 cm layer was similar to that of conventional cultivation. Cover crops exerted a significant influence on the soil moisture in carrot cultivation at all test dates, increasing its moisture content compared to cultivation without cover crops. The rye cover crop had particularly favourable effect on the soil moisture.

References

  1. Adetunji, A.T., Ncube, B., Mulidzi, R., Lewu, F.B. (2020). Management impact and benefit of cover crops on soil quality: A review. Soil Till. Res., 204, 104717. https://doi.org./10.1016/j.still.2020.104717 DOI: https://doi.org/10.1016/j.still.2020.104717
  2. Balwinder-Singh, Eberbach, P.L., Humphreys, E., Kukal, S.S. (2011). The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India. Agr. Water Manage., 98(12), 1847–1855. https://doi.org/10.1016/j.agwat.2011.07.002 DOI: https://doi.org/10.1016/j.agwat.2011.07.002
  3. Bartlová, J., Badalíková, B., Pospíšilová, L., Pokorný, E., Šarapatka, B. (2015). Water stability of soil aggregates in different systems of tillage. Soil Water Res., 10, 147–154. https://doi.org/10.17221/132/2014-SWR DOI: https://doi.org/10.17221/132/2014-SWR
  4. Błażewicz-Woźniak, M., Kęsik, T., Konopiński, M. (2001). Kształtowanie się agregacji gleby pod warzywami w uproszczonym systemie uprawy roli [Soil aggregates formation under vegetables in soil reduced cultivation system]. Acta Agroph., 45, 5–15 [in Polish].
  5. Błażewicz-Woźniak, M., Konopiński, M. (2013). Impact of cover crops and tillage on porosity of podzolic soil. Int Agrophys., 27(3), 247–255. https://doi.org/10.2478/v10247-012-0092-9 DOI: https://doi.org/10.2478/v10247-012-0092-9
  6. Błażewicz-Woźniak, M., Wach D., Patkowska, E., Konopiński, M. (2019). The effect of cover crops on the yield of carrot (Daucus carota L.) in ploughless and conventional tillage. Hort. Sci., 46(2), 57–64. https://doi.org/10.17221/61/2017-HORTSCI DOI: https://doi.org/10.17221/61/2017-HORTSCI
  7. Błażewicz-Woźniak, M., Wach, D. (2012). The fertilizer value of summer catch crops preceeding vegetables and its variation in the changing weather conditions. Acta Sci. Pol., Hortorum Cultus, 11(3), 101–116.
  8. Bodner, G., Loiskandl, W., Buchan, G., Kaul, H.-P. (2008). Natural and management-induced dynamics of hydraulic conductivity along a cover-cropped field slope. Geoderma, 146(1–2), 317–325. DOI: https://doi.org/10.1016/j.geoderma.2008.06.012
  9. Bodner, G., Nakhforoosh, A., Kaul, H.-P. (2015). Management of crop water under drought: a review. Agron. Sustain. Dev., 35(2), 401–442. https://doi.org/10.1007/s13593-015-0283-4 DOI: https://doi.org/10.1007/s13593-015-0283-4
  10. Czyż, E., Dexter, A. (2008). Soil physical properties under winter wheat grown with different tillage systems at selected locations. Int. Agroph., 23, 191–200.
  11. Dexter, A., Czyż, E. (2011). Soil crumbling during tillage as a function of soil organic matter content. Int. Agroph., 25, 215–221.
  12. Gaskell, M., Smith R.G. (2007). Nitrogen sources for organic vegetable crops. Hort. Technol., 17(4), 431–441. DOI: https://doi.org/10.21273/HORTTECH.17.4.431
  13. Gómez, J.A., Guzmán, M.G., Giráldez, J.V., Fereres, E. (2009). The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil. Soil Till. Res. 106(1), 137–144. https://doi.org/10.1016/j.still.2009.04.008 DOI: https://doi.org/10.1016/j.still.2009.04.008
  14. Harasim, E., Gawęda, D., Wesołowski, M., Kwiatkowski, C., Gocół, M. (2016). Cover cropping influences physico-chemical soil properties under direct drilling soybean. Acta Agric. Scand., B-S. P. Sci., 66(1), 85–94. https://doi.org/10.1080/09064710.2015.1066420 DOI: https://doi.org/10.1080/09064710.2015.1066420
  15. Kálmar, T., Bottlik, L., Kisić, I., Gyuricza, C., Birkás, M. (2013). Soil protecting effect of the surface cover in ex-treme summer periods. Plant Soil Environ., 59(9), 404–409. https://doi.org/10.17221/176/2013-PSE DOI: https://doi.org/10.17221/176/2013-PSE
  16. Kęsik, T., Błażewicz-Woźniak, M. (2010). Indicators of soil aggregation and their changes in conservation tillage for onion. Acta Sci. Pol., Hortorum Cultus, 9(1), 73–85.
  17. Kęsik, T., Błażewicz-Woźniak, M., Konopiński, M., Wach, D., Mitura, R. (2007). Wpływ mulczujących roślin okrywowych oraz uproszczonej uprawy roli pod cebulę na niektóre właściwości gleby [The effect of cover crop mulches and reduced soil tillage in onion cultivation on some features of soil]. Rocz. Akad. Rol. Pozn., Ogrod., 41, 517–521 [in Polish].
  18. Kęsik, T., Błażewicz-Woźniak, M., Wach, D. (2010). Influence of conservation tillage in onion production on the soil organic matter content and soil aggregate formation. Int. Agroph., 24(3), 267–273.
  19. Kęsik, T., Konopiński, M., Błażewicz-Woźniak, M. (2006). Wpływ uprawy przedzimowej i mulczu z roślin okrywających na retencję wody, zagęszczenie i porowatość dyferencyjną gleby po przezimowaniu [Effect of pre-wintersoil tillage and cover crop mulches on water retention, compaction and differential porosity of soil after winter time. Acta Agroph., 7(4), 915–926 [in Polish].
  20. Konopiński, M., Błażewicz-Woźniak, M., Wach, D., Patkowska, E. (2014). Ocena energochłonności i efektywności energetycznej zróżnicowanych systemów uprawy warzyw korzeniowych [Assessment of energy consumption and energy efficiency of various root vegetable cultivation systems]. In: Współczesne trendy w uprawie i żywieniu roślin ogrodniczych: Ogólnopolska Konferencja Naukowa oraz XV Jubileuszowy Zjazd Katedr Uprawy i żywienia Roślin Ogrodniczych, Lublin-Susiec, 12–13 czerwca 2014. UP Lublin, 33–34 [in Polish].
  21. Konopiński, M., Kęsik, T., Błażewicz-Woźniak, M. (2001). Wpływ mulczowania międzyplonowymi roślinami okrywowymi i uprawy zerowej na kształtowanie wilgotności i zagęszczenia gleby [Influence of mulching with cover crops and zero-tillage on soil moisture and compaction]. Acta Agroph., 45, 105–116 [in Polish].
  22. Lampurlanés, J., Cantero-Martínez, C. (2006). Hydraulic conductivity, residue cover and soil surface roughness under different tillage systems in semiarid conditions. Soil Till. Res., 85(1), 13–26. http://dx.doi.org/10.1016/j.still.2004.11.006 DOI: https://doi.org/10.1016/j.still.2004.11.006
  23. Lithourgidis, A.S., Dordas, C.A., Damalas, C.A., Vlachostergios, D.N. (2011). Annual intercrops: an alterna-tive pathway for sustainable agriculture. Aust. J. Crop. Sci., 5(4), 396–410.
  24. Melero, S., Panettieri, M., Madejón, E., Macpherson, H.G., Moreno, F., Murillo, J.M. (2011). Implementation of chiselling and mouldboard ploughing in soil after 8 years of no-till management in SW, Spain: Effect on soil quality. Soil Till. Res., 112(2), 107–113. https://doi.org/10.1016/j.still.2010.12.001 DOI: https://doi.org/10.1016/j.still.2010.12.001
  25. Mrabet, R., El-Brahli, A., Anibat, I., Bessam, F. (2003). No-tillage technology: research review of impacts on soil quality and wheat production in semiarid Morocco. In: C. Cantero-Martínez, D. Gabiña (ed.). Mediter-ranean rainfed agriculture: Strategies for sustainability. CIHEAM, Options Méditer., 60, 133–138.
  26. Mulumba, L.N., Lal, R. (2008). Mulching effects on selected soil physical properties. Soil Till. Res. 98(1), 106– 111. https://doi.org/10.1016/j.still.2007.10.011 DOI: https://doi.org/10.1016/j.still.2007.10.011
  27. Patkowska, E., Błażewicz-Woźniak, M., Konopiński, M., Wach, D. (2016). The effect of cover crops on the fungal and bacterial communities in the soil under carrot cultivation. Plant Soil Environ., 62(5), 237–242. https://doi.org/10.17221/117/2016-PSE DOI: https://doi.org/10.17221/117/2016-PSE
  28. Patkowska, E., Jamiołkowska, A., Błażewicz-Woźniak, M. (2018). Antagonistic activity of selected fungi of the soil environment of carrot. Plant Soil Environ., 64(2), 58–63. https://doi.org/10.17221/792/2017-PSE DOI: https://doi.org/10.17221/792/2017-PSE
  29. Ramakrishna, A., Tam, H.M., Wani, S.P., Long, T.D. (2006). Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res., 95(2–3), 115–125. https://doi.org/10.1016/j.fcr.2005.01.030 DOI: https://doi.org/10.1016/j.fcr.2005.01.030
  30. Šimanský, V., Lukáč, M. (2018). Soil structure after 18 years of long-term different tillage systems and fertili-sation in Haplic Luvisol. Soil Water Res., 13, 140–149. https://doi.org/10.17221/38/2017-SWR DOI: https://doi.org/10.17221/38/2017-SWR
  31. Steele, M.K., Coale, F.J., Hill, R.L. (2012). Winter annual cover crop impacts on no-till soil physical properties and organic matter. Soil Sci. Soc. Am. J., 76(6), 2164–2173. https://doi.org/10.2136/sssaj2012.0008 DOI: https://doi.org/10.2136/sssaj2012.0008
  32. Verhulst, N., Nelissen, V., Jespers, N., Haven, H., Sayre, K.D., Raes, D., Govaerts, B. (2011). Soil water content, maize yield and its stability as affected by tillage and crop residue management in rainfed semi-arid highlands. Plant Soil, 344(1–2), 73–85. DOI: https://doi.org/10.1007/s11104-011-0728-8
  33. Villamil, M.B., Bollero, G.A., Darmody, R.G., Simmons, F.W., Bullock, D.G. (2006). No‐till corn/soybean sys-tems including winter cover crops: Effects on soil prop¬erties. Soil Sci. Soc. Am. J., 70(6), 1936–1944. https://doi.org/10.2136/sssaj2005.0350 DOI: https://doi.org/10.2136/sssaj2005.0350
  34. Zaniewicz-Bajkowska, A., Rosa, R., Kosterna, E., Franczuk, J., Buraczyńska, D. (2010). The effect of sunflower (Helianthus annuus L.) catch crop on content of selected components of nutritive value of sweet corn (Zea mays L. var. saccharata (Sturtev.) L.H. Bailey). Acta Sci. Pol., Hortorum Cultus, 9(4), 53–62.
  35. Zaongo, C.G., Wendt, C.W., Lascano, R.J., Juo, A.S.(1997). Interactions of water, mulch and nitrogen on sorghum in Niger. Plant Soil, 197, 119–126. DOI: https://doi.org/10.1023/A:1004244109990
  36. Zhang, G.S., Chan, K.Y., Oates, A., Heenan, D.P., Huang, G.B. (2007). Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil Till. Res. 92(1–2), 122–128. https://doi.or-g/10.1016/j.still.2006.01.006 DOI: https://doi.org/10.1016/j.still.2006.01.006

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 4 > >> 

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.