Skip to main navigation menu Skip to main content Skip to site footer

Vol. 17 No. 6 (2018)

Articles

EFFECT OF SALINITY ON SELECTED PHYSIOLOGICAL AND MORPHOLOGICAL CHARACTERISTICS OF Spartina pectinata (Link.) ‘AUREOMARGINATA’

DOI: https://doi.org/10.24326/asphc.2018.6.12
Submitted: December 20, 2018
Published: 2018-12-20

Abstract

The aim of the present study was to examine physiological and morphological characteristics of Spartina pectinata ‘Auremarginata’ in response to various soil salinity conditions. Investigating the plant’s response and time-point of potential adjustment to salinity stress will help determine the suitability of the species for growing in the roadsides. The effect of various levels of salinity on S. pectinata ‘Aureomarginata’ was examined. The NaCl was applied at five different levels (g·dm–3): 0 (control), 15, 30, 45, 60. The plant response was analysed after 14, 28, 42 and 56 days of the experiment. The highest concentration showed the strongest negative effects, which were indicated by a decrease in net photosynthesis rate (PN), stomatal conductance (gs), transpiration rate (E), specific leaf area (SLA), relative water content (RWC) and the number of shoots, number of young shoots and length of mature shoots. Plants have even some types of adjustment to stress conditions, at medium levels. This was especially valid for PN and gs after 28 days of the experiment. Principal component analysis revealed negative relationship of salinity level with PN, gs, E, RWC, SLA, number of young shoots and number of shoots, whereas a positive relationship was recorded with CMS, Ci, number of young leaves and leaf chlorophyll content (SPAD).

References

  1. Bandurska, H., Gniazdowska-Skoczek, H. (1995). Cell membrane stability in two barley genotypes under water stress conditions. Acta Soc. Bot. Pol., 64, 29–32.
  2. Bryson, G.M., Barker, A.V. (2002). Sodium accumulation in soils and plants along Massachusetts roadsides. Comm. Soil Sci. Plant Anal., 33(1–2), 67–78.
  3. Ceksterea, G., Nicodemus, O., Osvalde, A. (2008). Toxic impact of the deicing material to street greenery in Riga, Latvia. Urban For. Urban Green., 7, 207–217.
  4. Cunningham, M.A., Snyder, E., Yonkin, D., Ross, M., Elsen, T. (2008). Accumulation of deicing salts in soils in an urban environment. Urban Ecosyst., 1, 17–31.
  5. Dai, H.L., Zhang, K.L., Xu, X.L., Yu, H.Y. (2012). Evaluation on the effects of deicing chemicals on soil and water environment. Proc. Environ. Sci., 13, 2122–2130.
  6. Eid, M.A. (2011). Halophytic plants for phytoremediation of heavy metals contained soil. J. Am. Sci., 7(8), 377–382.
  7. Farooq, S., Azam, F. (2006). The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. J. Plant Physiol., 163, 629–637.
  8. Glenn, E.P. (1987). Relationship between cation accumulation and water content of salt-tolerant grasses and a sedge. Plant Cell Environ., 10, 205–212.
  9. Garnier, E., Shipley, B., Roumet, C., Laurent, G. (2001). A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct. Ecol., 15, 688–695.
  10. Gonzàlez, L., Gonzàlez-Vilar, M. (2001). Determination of relative water content. In: Handbook of plant ecophysiology techniques, Roger, M.J.R. (ed.). Kluwer,
  11. Dordrecht, 207–212. Available: https://link.springer. com/chapter/10.1007/0-306-48057-3_14 [date of access: 2.12.2017].
  12. Gregorczyk, A., Raczyńska, A. (1997). Badania korelacji między metodą Arnona a pomiarami zawartości chlorofilu za pomocą chlorofilometru. Folia Univ. Agric. Stetin., 181, Agricultura, 5, 119–123.
  13. Gregorczyk, A., Raczyńska, A., Pacewicz, K. (1998). Analiza krzywych wzorcowych zawartości chlorofilu dla podstawowych gatunków zbóż. Biul. Magnezol., 3(1), 19–21.
  14. Henschke, M. (2017). Response of ornamental grasses cultivated under salinity stress. Acta Sci. Pol. Hortorum Cultus, 16(1), 95–103.
  15. Howard, K.W.F., Maier, H. (2007). Road de-icing salt as a potential constraint on urban growth in the Greater Toronto Area, Canada. J. Contam. Hydrol., 91, 146–170.
  16. Levering, C.A., Thompson, W.W. (1971). The ultrastructure of the salt gland of Spartina foliosa. Planta (Berl.), 97, 183–196.
  17. Longstreth, D.J., Strain, B.R. (1977). Effects of salinity and illumination on photosynthesis and water balance of Spartina alterniflora Loisel. Oecologia (Berl.), 31, 191–199.
  18. Maas, E.V., Poss, J.A., Hoffman, G.J. (1986). Salinity sensitivity on sorghum at three growth stages. Irrig. Sci., 7, 1–11.
  19. Mallot, P.G., Davy, A.J., Jefferie, R.L., Hutton, M.J. (1975). Carbon dioxide exchange in leaves of Spartina anglica Hubbard. Oecologia, 20, 351–358.
  20. Maricle, B.R, Koteyeva, N.K., Voznesenskaya, E.V., Thomasson, J.R., Edwards, G.E. (2009). Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C4 genus Spartina (Poaceae). Plant Pathol., 184(1), 216–233.
  21. Montemayor, M.B., Price, J.S., Rochefort, L., Boudreau, S. (2008). Temporal variations and spatial patterns in saline and waterlogged peat fields: 1. Survival and growth of salt marsh graminoids. Environ. Exp. Bot., 62, 333–342.
  22. Munns, R., (2002). Comparative physiology of salt and water stress. Plant Cell Environ., 25(2), 239–250.
  23. Nabati, J., Kafi, M., Masoumi, A., Mehrijerdi, M.Z. (2013). Effect of salinity and silicon application on photosynthetic characteristics of sorghum (Sorghum bicolor L.). Int. J. Agric. Sci., 3(4), 483–492.
  24. Qin, J., Dong, W.Y., He, K.N., Yu, Y., Tan, G.D., Han, L., Dong, M., Zhang, Y.Y., Zhang, D., Lil, A.Z., Wang, Z.L. (2010). NaCl salinity-induced changes in water status, ion contents and photosynthetic properties of Shepherdia argentea (Pursh) Nutt. seedlings. Plant Soil Environ., 56(7), 325–332.
  25. Rabie, G.H., Almadini, A.M. (2005). Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr. J. Biotechnol., 4(3), 210–220.
  26. Radwan, U.A., Springule, I., Biswas, P.K., Huluka, G. (2000). The effect of salinity on water use efficiency of Balanites aegyptiaca (L.) Del. Egypt. J. Biol., 2, 1–7.
  27. Ramakrishna, D.M., Viraraghavan, T. (2005). Environmental impact of chemical deicers – a review. Water Air Soil Poll., 166, 49–63.
  28. Snedden, G.A., Cretini, K.F., Patton, B. (2015). Inundation and salinity impacts to above- and below-ground productivity in Spartina patens and Spartina alterniflora in the Mississippi River Deltaic Plain: implications for using river diversions as restoration tools. Ecol. Eng., 81, 133–139.
  29. Vasquez, E.A., Glenn, E.P., Guntenspergen, G.R., Brown, J.J., Nelson, S.G. (2006). Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae), and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. Am. J. Bot., 93(12), 1784–1790.
  30. Warren, R.S., Baird, L.M., Thompson, A.K. (1985). Salt tolerance in cultured cells of Spartina pectinata. Plant Cell Rep., 4, 84–87.
  31. Warren, R.S., Brockelman, P.M. (1989). Photosynthesis, respiration and salt gland activity of Distichlis spicata in relations to soil salinity. Bot. Gaz., 150(4), 346–350.
  32. Wrochna, M., Gawrońska, H., Gawroński, S., (2006). Wytwarzanie biomasy i akumulacja jonów Na+, K+, Ca2+, Mg2+, Cl– w warunkach stresu solnego, przez wybrane gatunki roślin ozdobnych. Acta Agrophys., 7(3), 775–785.
  33. Wu, J., Seliskar, DM., Gallagher, J.L. (1998). Stress tolerance in the marsh plant Spartina patens: Impact of NaCl on growth and root plasma membrane lipid composition. Physiol. Plant., 102, 307–317.

Downloads

Download data is not yet available.

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.