Abstrakt
The bacterium Xanthomonas campestris pathovar campestris (Xcc) as the causal agent of black rot of cruciferous plants causes considerable losses in agricultural yield all over the world. The control of black rot is difficult as well as the determination of Xcc on the basis of morphological parameters or by pathogenicity testing. Ten different possibilities for extraction bacterial DNA followed by PCR detection method were tested to optimize PCR protocol. On the basis of ISTA validated method, three sets of primers UBP 1052F-BACR, DLH 120-125 and ZUP 2309-2310 were used. The results of measured concentration and quality of DNA and efficacy for PCR amplification were compared. Finally, three approaches for DNA extraction within Xanthomonas campestris pv. campestris detection protocol were recommended – commercial kits used for isolation from tissues by Macherey-Nagel and MO BIO and kit intended for microbial cultures by MO BIO.
Bibliografia
Ahrends, U., Seeműller, E., (1992). Detection of DNA of plant pathogenic mycoplasmalike organisms by a polymerase chain reaction that amplifies a sequence of the 16S rRNA gene. Phytopathology, 82, 828–832.
Alvarez, A.M. (2001). Black rot of crucifers. In: Mechanisms of resistance to plant diseases, Slusarenko, A.J., Fraser, R.S.S., van Loon, L.C. (eds). Dordrecht: Kluwer Academic Publishers, 21–44.
Berg, T., Tesoriero, L., Hailstones, D.L. (2005). PCR-based detection of Xanthomonas campestris pathovars in Brassica seed. Plant Pathol., 54, 416–427. DOI: 10.1111/j.0032-0862.2005.01186.x.
Bernatzky, R., Tanksley, S.D. (1986). Genetics of actin-related sequences in tomato. Theoret. App. Gen., 72, 314–321.
Bila, J., Mortensen, C.N., Andersen, M., Vicente, J.G., Wulff, E.G. (2013). Xanthomonas campestris pv. campestris race 1 is the main causal agent of black rot of Brassicas in Southern Mozambique. African J. Biotech., 12(6), 602–610. DOI: 10.5897/AJB12.2455.
Divashuk, M., Mayer, N., Kroupin, P., Rubets, V., Pylnev, V., Tkhi Tkhu Lin, N., Soloviev, A., Karlov, G. (2012). The association between the allelic state of Vp-1B and pre-harvest sprouting tolerance in red-seeded hexaploid triticale. Open J. Gen., 2, 51–55. DOI: 10.4236/ojgen.2012.21006.
Fargier, E., Manceau, C. (2007). Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol., 56, 805–818.
Gogorcena, Y., Arulsekar, S., Dandekar, A.M., Parfitt, D.E. (1993). Molecular markers for grape characterization. Vitis, 32, 183–185.
Grimault, V., Andro, C., Politikou, A. (2012). PCR as a new identification method of Xanthomonas campestris pv. campestris on Brassica spp. seed. In: Method Validation Reports on Rules Proposals for the International Rules for Seed Testing 2013 Edition, International Seed Testing Association. Bassersdorf, Switzerland, 2–11.
Holleinová, V., Čechová, J. (2012). The detection of viruses and phytoplasmas in dwarfed shoots of grapevine varieties Aurelius and Neuburger. Acta Univ. Agricult. Silvicult. Mendel. Brunnen., 60, 8, 73–78.
ISTA (2013). 7–019 Detection of Xanthomonas campestris pv. campestris on Brassica spp. (prepared by Roberts, S.J., Koenraadt, H.) International Rules for Seed Testing, Annexe to Chapter 7: Seed Health Testing Methods, Bassersdorf, Switzerland, International Seed Testing Association.
Klimyuk, V.I, Carroll, B.J., Thomas, C.M., Jones, J.D.G. (1993). Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J., 3, 493–494.
Krichen, L., Martins, J.M.S., Lambert, P., Daaloul, A., Trifi-Farah, N., Marrakchi M., Audergon, J-M. (2008). Using AFLP markers for the analysis of the genetic diversity of apricot cultivars in Tunisia. J. Am. Soci. Horticult. Sci., 133, 204–212.
Mynarzová, Z. (2013). Ověření úspěšnosti genetických transformací podnožových odrůd révy vinné za účelem navození jejich rezistence vůči viru GFLV. Diploma thesis. Mendel University in Brno. Faculty of Horticulture Lednice, Czech Republic.
Palacio-Bielsa, A., Cambra, A., López, M.M. (2009). PCR detection and identification of plantpathogenic bacteria: updated review of protocols (1989–2007). J. Plant Pathol., 91(2), 249–297.
Pilařová, P., Marandel, G., Decroocq, V., Salava, J., Krška B., Abbott, A.G., (2010). Quantitative trait analysis of resistance to plum pox virus in the apricot F1 progeny ‘Harlayne’ × ‘Vestar’. Tree Gen., 6, 3, 467–475. DOI: 10.1007/s11295-009-0264-3.
Rijlaarsdam, A., Woudt, B., Simons, G., Koenraadt, H., Oosterhof, J., Asma, M., Buddiger, P., Roorda, P., Grimault, V., De Koning, J. (2004). Development of specific primer for the molecular detection of Xanthomonas campestris pv. campestris. EPPO Conference on Quality of Diagnosis and New Diagnostic Methods for Plant Pests, Noordwijkerhout, NL, 2004-04-09/22.
Smulders, J.J.M., Noordijk, Y., Rus-Kortekaas, W., Bredemeijer, G.M.M., Vosman, B. (2003). Microsatellite genotyping of carnation varieties. Theoret. App. Gen., 106, 1191–1195.
Williams, P.H. (2007). Black rot. In: Compendium of Brassica diseases, Rimmer, S.R., Shattuck, V., Buchwaldt, L. (eds). St. Paul, Minn., American Phytopathological Society, 60–62. ISBN 978-0-89054-344-3.
Downloads
Download data is not yet available.