Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 4 (2023)

Articles

Investigating the impact of TiO2 nanoparticles on bioactive compounds in sweet pepper seedlings: a comparison of foliar and root application methods

DOI: https://doi.org/10.24326/asphc.2023.5144
Submitted: April 12, 2023
Published: 2023-08-31

Abstract

Engineered TiO2 nanoparticles (TiO2-NPs) are broadly produced and utilized in various consumer products. However, plant uptake of NPs may lead to disruptions in physiological and metabolic processes, particularly when the plant’s defense mechanisms are overwhelmed. In this study, sweet pepper seedlings were exposed to TiO2-NPs via foliar (2.5% suspension) and root (0.5% suspension) methods, with plants treated with distilled water serving as controls. Results showed that foliar application caused higher accumulation of Ti in leaves as compared to stems, while root exposure led to a higher increase of Ti content in stems than in leaves. Additionally, foliar application led to alterations in chemical composition of the plants, including changes in malondialdehyde (MDA), L-ascorbic acid, total phenolics content, carotenoids, in total antioxidant capacity (TAC) and antioxidant enzymes activity. Root exposure also affected enzyme activity and TAC, but also altered H2O2, MDA and glutathione content. Chlorophylls remained at stable level in the leaves of the seedlings. Overall, these studies provide important information on plant-nanoparticle interactions and the potential effects of different nanoparticle application strategies. These data indicate also that the specific nanoparticles, applied at a controlled manner, have potential to boost the plant metabolism and improve stress tolerance, which is an important factor affecting crops’ quality and productivity.

References

  1. Aebi, H. (1984). Catalase in vitro. Meth. Enzymol., 105, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3 DOI: https://doi.org/10.1016/S0076-6879(84)05016-3
  2. Akram, N.A, Shafiq, F., Ashraf, M. (2017). Ascorbic acid – A potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front. Plant Sci., 8, 613. https://doi.org/10.3389/fpls.2017.00613 DOI: https://doi.org/10.3389/fpls.2017.00613
  3. Avellan, A., Schwab, F., Masion, A., Chaurand, P., Borschneck, D., Vidal, V., Rose, J., Santaella, C., Levard, C. (2017). Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environ. Sci. Technol., 51(15), 8682–8691. https://dx.doi.org/10.1021/acs.est.7b01133 DOI: https://doi.org/10.1021/acs.est.7b01133
  4. Bilska, K., Wojciechowska, N., Alipour, S., Kalemba, E.M. (2019). Ascorbic acid – the little-known antioxidant in woody plants. Antioxidants, 8(12), 645. https://doi.org/10.3390/antiox8120645 DOI: https://doi.org/10.3390/antiox8120645
  5. Chumyam, A., Shank, L., Faiyue, B., Uthaibutra, J., Saengnil, K. (2017). Effects of chlorine dioxide fumigation on redox balancing potential of antioxidative ascorbate-glutathione cycle in ‘Daw’ longan fruit during storage. Sci. Hortic., 222, 76–83. https://doi.org/10.1016/j.scienta.2017.05.022 DOI: https://doi.org/10.1016/j.scienta.2017.05.022
  6. Chung, I.-M., Rajakumar, G., Thiruvengadam, M. (2018). Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy root cultures of Cucumis anguria. Acta Biol. Hung., 69(1), 97–109. https://doi.org/10.1556/018.68.2018.1.8 DOI: https://doi.org/10.1556/018.68.2018.1.8
  7. Cocozza, C., Perone, A., Giordano, C., Salvatici, M.C., Pignattelli, S., Raio, A., Schaub, M., Sever, K., Innes, J.L., Tognetti, R., Cherubini, P. (2019). Silver nanoparticles enter the tree stem faster through leaves than through roots. Tree Physiol., 39(7), 1251–1261. https://doi.org/10.1093/treephys/tpz046 DOI: https://doi.org/10.1093/treephys/tpz046
  8. Das, K., Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci., 2(53). http://dx.doi.org/10.3389/fenvs.2014.00053 DOI: https://doi.org/10.3389/fenvs.2014.00053
  9. Dhindsa, R.S., Matowe, W. (1981). Drought tolerance in two mosses: Correlated with enzymatic defense against lipid peroxidation. J. Exp. Bot., 32(1), 79–91. https://doi.org/10.1093/jxb/32.1.79 DOI: https://doi.org/10.1093/jxb/32.1.79
  10. Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., Vidal, N. (2006). Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem., 97(4), 654–660. https://doi.org/10.1016/j.foodchem.2005.04.028 DOI: https://doi.org/10.1016/j.foodchem.2005.04.028
  11. Eichert, T., Goldbach, H.E. (2008). Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces-further evidence for a stomatal pathway. Physiol. Plant., 132(4), 491–502. https://doi.org/10.1111/j.1399-3054.2007.01023.x DOI: https://doi.org/10.1111/j.1399-3054.2007.01023.x
  12. Eichert, T., Kurtz, A., Steiner, U., Goldbach, H.E. (2008). Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water -suspended nanoparticles. Physiol. Plant., 134(1), 151–160. https://doi.org/10.1111/j.1399-3054.2008.01135.x DOI: https://doi.org/10.1111/j.1399-3054.2008.01135.x
  13. Fu, L., Wang, Z., Dhankher, O.P., Xing, B. (2020). Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. J. Exp. Bot., 71(2), 507–519. https://doi.org/10.1093/jxb/erz314 DOI: https://doi.org/10.1093/jxb/erz314
  14. Ghorbanpour, M. (2015). Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian J. Plant Physiol., 20, 249–256. https://doi.org/10.1007/s40502-015-0170-7 DOI: https://doi.org/10.1007/s40502-015-0170-7
  15. Gill, S.S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016 DOI: https://doi.org/10.1016/j.plaphy.2010.08.016
  16. Gupta, D.K., Palma, J.M., Corpas, F.J. (2018). Antioxidants and antioxidant enzymes in higher plants. Springer International Publishing AG, Cham, Switzerland. https://doi.org/10.1007/978-3-319-75088-0 DOI: https://doi.org/10.1007/978-3-319-75088-0
  17. Guri, A. (1983). Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone. Can. J. Plant Sci., 63(3), 733–737. https://doi.org/10.4141/cjps83-090 DOI: https://doi.org/10.4141/cjps83-090
  18. Hong, J., Wang, C., Wagner, D.C., Gardea-Torresdey, J.L., He, F., Rico, C.M. (2021). Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environ. Sci. Nano, 8, 1196–1210. https://doi.org/10.1039/D0EN01129K DOI: https://doi.org/10.1039/D0EN01129K
  19. Hou, J., Wang, L., Wang, C., Zhang, S., Liu, H., Li, S., Wang, X. (2019). Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J. Environ. Sci., 75, 40–53. https://doi.org/10.1016/j.jes.2018.06.010 DOI: https://doi.org/10.1016/j.jes.2018.06.010
  20. Ikewuchi, C.J., Ikewuchi, C.C. (2011). Iodometric determination of the ascorbic acid (vitamin C) content of some fruits consumed in a university community in Nigeria. Glob. J. Pure Appl. Sci., 17(1), 47–49. https://www.ajol.info/index.php/gjpas/article/view/78733
  21. Ishikawa, T., Shigeoka, S. (2008). Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci. Biotechnol. Biochem., 72(5), 1143–1154. https://doi.org/10.1271/bbb.80062 DOI: https://doi.org/10.1271/bbb.80062
  22. Jurkow, R., Sękara, A., Pokluda, R., Smoleń, S., Kalisz, A. (2020). Biochemical response of oakleaf lettuce seedlings to different concentrations of some metal(oid) oxide nanoparticles. Agronomy (Basel), 10(7), 997. https://doi.org/10.3390/agronomy10070997 DOI: https://doi.org/10.3390/agronomy10070997
  23. Khan, I., Awan, S.A., Rizwan, M., Ul Hassan, Z., Akram, M.A., Tariq, R., Brestic, M., Xie, W. (2022). Nanoparticle’s uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: a review. Environ. Sci. Pollut. Res., 29(60), 89823–89833. https://doi.org/10.1007/s11356-022-23945-2 DOI: https://doi.org/10.1007/s11356-022-23945-2
  24. Khan, Z., Shahwar, D., Ansari, M.K.Y., Chandel, R. (2019). Toxicity assessment of anatase (TiO2) nanoparticles: A pilot study on stress response alterations and DNA damage studies in Lens culinaris Medik. Heliyon, 5(7), e02069. https://doi.org/10.1016/j.heliyon.2019.e02069 DOI: https://doi.org/10.1016/j.heliyon.2019.e02069
  25. Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., Ouerdane, L., Carrière, M., Sarret, G. (2014a). Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation. J. Hazard. Mater., 264, 98–106. https://doi.org/10.1016/j.jhazmat.2013.10.053 DOI: https://doi.org/10.1016/j.jhazmat.2013.10.053
  26. Larue, C., Castillo-Michel, H., Sobanska, S., Trcera, N., Sorieul, S., Cécillon, L., Ouerdane, L., Legros, S., Sarret, G. (2014b). Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J. Hazard. Mater., 273, 17–26. https://doi.org/10.1016/j.jhazmat.2014.03.014 DOI: https://doi.org/10.1016/j.jhazmat.2014.03.014
  27. Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A.-M., Brisset, F., Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci. Total Environ., 431, 197–208. https://doi.org/10.1016/j.scitotenv.2012.04.073 DOI: https://doi.org/10.1016/j.scitotenv.2012.04.073
  28. Lei, Z., Mingyu, S., Xiao, W., Chao, L., Chunxiang, O., Liang, C., Hao, H., Xiaoqing, L., Fashui, H. (2008). Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol. Trace Elem. Res., 121(1), 69–79. https://doi.org/10.1007/s12011-007-8028-0 DOI: https://doi.org/10.1007/s12011-007-8028-0
  29. Lichtenthaler, H.K., Wellburn, AR. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans., 11(5), 591–592. https://doi.org/10.1042/bst0110591 DOI: https://doi.org/10.1042/bst0110591
  30. Lv, J., Christie, P., Zhang, S. (2019). Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ. Sci. Nano, 6, 41–59. https://doi.org/10.1039/C8EN00645H DOI: https://doi.org/10.1039/C8EN00645H
  31. Lyu, S.H., Wei, X.Y., Chen, J.J., Wang, C., Wang, X.M., Pan, D.M., (2017). Titanium as a beneficial element for crop production. Front. Plant Sci., 8, 597. https://doi.org/10.3389/fpls.2017.00597 DOI: https://doi.org/10.3389/fpls.2017.00597
  32. Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 15, 523–530.
  33. Mohammadi, R., Maali-Amiri, R., Mantrib, N.L. (2014). Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russ. J. Plant Physiol., 61, 768–775. https://doi.org/10.1134/S1021443714050124 DOI: https://doi.org/10.1134/S1021443714050124
  34. Molyneux, P., (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol., 26(2), 211–219.
  35. Mustafa, N., Raja, N.I., Ilyas, N., Ikram, M., Mashwani, Z-ur-R., Ehsan, M. (2021). Foliar applications of plant-based titanium dioxide nanoparticles to improve agronomic and physiological attributes of wheat (Triticum aestivum L.) plants under salinity stress. Green Process. Synt., 10(1), 246–257. http://dx.doi.org/10.1515/gps-2021-0025 DOI: https://doi.org/10.1515/gps-2021-0025
  36. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232 DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076232
  37. Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., Foyer, CH. (2012). Glutathione in plants: an integrated overview. Plant Cell Environ., 35(2), 454–484. https://doi.org/10.1111/j.1365-3040.2011.02400.x DOI: https://doi.org/10.1111/j.1365-3040.2011.02400.x
  38. Pijanowski, E., Mrożewski, S., Horubała, A. (1964). Technologia produktów owocowych i warzywnych [Technology of Fruit and Vegetable Products]. PWRiL, Warsaw, Poland.
  39. Popp, C., Burghardt, M., Friedmann, A., Riederer, M. (2005). Characterization of hydrophilic and lipophilic pathways of Hedera helix L. cuticular membranes: Permeation of water and uncharged organic compounds. J. Exp. Bot., 56(421), 2797–2806. http://dx.doi.org/10.1093/jxb/eri272 DOI: https://doi.org/10.1093/jxb/eri272
  40. Rafique, R., Zahra, Z., Virk, N., Shahid, M., Pinelli, E., Park, T.J., Kallerhoff, J., Arshad, M. (2018). Dosedependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: alterations in chlorophyll content, H2O2 production, and genotoxicity. Agric. Ecosyst. Environ., 255, 95–101. https://doi.org/10.1016/j.agee.2017.12.010 DOI: https://doi.org/10.1016/j.agee.2017.12.010
  41. Raliya, R., Biswas, P., Tarafdar, JC. (2015). TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol. Rep., 5, 22–26. https://doi.org/10.1016/j.btre.2014.10.009 DOI: https://doi.org/10.1016/j.btre.2014.10.009
  42. Ramel, F., Birtic, S., Cuine, S., Triantaphylides, C., Ravanat, J.L., Havaux, M., (2012). Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol., 158(3), 1267–1278. https://doi.org/10.1104/pp.111.182394 DOI: https://doi.org/10.1104/pp.111.182394
  43. Rico, C.M., Peralta-Videa, J.R., Gardea-Torresdey, J.L. (2015). Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. In: Siddiqui, M.H., Al-Whaibi, M.H., Mohammad, F. (eds.), Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer International Publishing Switzerland, pp. 1–17. http://dx.doi.org/10.1007/978-3-319-14502-0_1 DOI: https://doi.org/10.1007/978-3-319-14502-0_1
  44. Satti, S.H., Raja, N.I., Ikram, M., Oraby, H.F., Mashwani, Z-U-R., Mohamed, A.H., Singh, A., Omar, A.A. (2022). Plant-based titanium dioxide nanoparticles trigger biochemical and proteome modifications in Triticum aestivum L. under biotic stress of Puccinia striiformis. Molecules, 27(13), 4274. https://doi.org/10.3390/molecules27134274 DOI: https://doi.org/10.3390/molecules27134274
  45. Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J.L., Wiesner, M.R. (2016). Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – critical review. Nanotoxicology, 10(3), 257–278. https://doi.org/10.3109/17435390.2015.1048326 DOI: https://doi.org/10.3109/17435390.2015.1048326
  46. Servin, A.D., Morales, M.I., Castillo-Michel, H., Hernandez-Viezcas, J.A., Munoz, B., Zhao, L., Nunez, J.E., Peralta-Videa, J.R., Gardea-Torresdey, J.L. (2013). Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ. Sci. Technol., 47(20), 11592–11598. https://doi.org/10.1021/es403368j DOI: https://doi.org/10.1021/es403368j
  47. Shan, C., Zhang, S., Ou, X. (2018). The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress. Protoplasma, 255(4), 1257–1262. https://doi.org/10.1007/s00709-018-1213-5 DOI: https://doi.org/10.1007/s00709-018-1213-5
  48. Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot., 2012, 217037.https://doi.org/10.1155/2012/217037 DOI: https://doi.org/10.1155/2012/217037
  49. Sharma, S., Singh, V.K., Kumar, A., Mallubhotla, S. (2019). Effect of nanoparticles on oxidative damage and antioxidant defense system in plants. In: Roychoudhury, A., Tripathi, D.K. (eds.), Molecular plant abiotic stress: biology and biotechnology. John Wiley & Sons Ltd. http://dx.doi.org/10.1002/9781119463665.ch17 DOI: https://doi.org/10.1002/9781119463665.ch17
  50. Shi, H., Magaye, R., Castranova, V., Zhao, J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data. Part. Fibre Toxicol., 10, 15. https://doi.org/10.1186/1743-8977-10-15 DOI: https://doi.org/10.1186/1743-8977-10-15
  51. Silva, S., de Oliveira, J.M.P.F., Dias, M.C., Silva, A.M.S., Santos, C. (2019). Antioxidant mechanisms to counteract TiO2-nanoparticles toxicity in wheat leaves and roots are organ dependent. J. Hazard. Mater., 380, 120889. https://doi.org/10.1016/j.jhazmat.2019.120889 DOI: https://doi.org/10.1016/j.jhazmat.2019.120889
  52. Singh, P.K., Srivastava, D., Tiwari, P., Tiwari, M., Verma, G., Chakrabarty, D. (2019). Drought tolerance in plants: molecular mechanism and regulation of signaling molecules. In: Khan, M.I.R., Reddy, P.S., Ferrante, A., Khan, N.A., (eds.), Plant Signaling Molecules, Woodhead Publishing, pp. 105–123. DOI: https://doi.org/10.1016/B978-0-12-816451-8.00006-X
  53. Vangronsveld, J., Clijsters, H. (1994). Toxic effects of metals. In: Fargo, M.E., (eds.), Plants and the chemical elements: biochemistry, uptake, tolerance and toxicity.
  54. VCH Press, Weinheim, Germany, pp. 149–177. https://doi.org/10.1002/9783527615919.ch6 DOI: https://doi.org/10.1002/9783527615919.ch6
  55. Vincent, T. (2017). Total elemental analysis in clinical research using the Thermo Scientific iCAP TQ ICP-MS. Technical note, Thermo Fisher Scientific, Bremen, Germany TN43283-EN 0117.
  56. Wang, Y., Sun, C., Zhao, X., Cui, B., Zeng, Z., Wang, A., Liu, G., Cui, H. (2016a). The application of nano-TiO2 photo semiconductors in agriculture. Nanoscale Res. Lett., 11, 529. https://doi.org/10.1186/s11671-016-1721-1 DOI: https://doi.org/10.1186/s11671-016-1721-1
  57. Wang, P., Lombi, E., Zhao, F-J., Kopittke, PM. (2016b). Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci., 21(8), 699–712. https://doi.org/10.1016/j.tplants.2016.04.005 DOI: https://doi.org/10.1016/j.tplants.2016.04.005
  58. Wu, J., Wang, G., Vijver, M.G., Bosker, T., Peijnenburg, W.J.G.M. (2020). Foliar versus root exposure of AgNPs to lettuce: phytotoxicity, antioxidant responses and internal translocation. Environ. Pollut., 261, 114117. https://doi.org/10.1016/j.envpol.2020.114117 DOI: https://doi.org/10.1016/j.envpol.2020.114117
  59. Yang, J., Cao, W., Rui, Y. (2017). Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J. Plant Interact., 12, 158–169. https://doi.org/10.1080/17429145.2017.1310944 DOI: https://doi.org/10.1080/17429145.2017.1310944
  60. Zhang, Z., Pang, X., Duan, X., Ji, Z.L., Jiang, Y. (2005). Role of peroxidase in anthocyanine degradation in litchi fruit pericarp. Food Chem., 90, 47–52. https://doi.org/10.1016/j.foodchem.2004.03.023 DOI: https://doi.org/10.1016/j.foodchem.2004.03.023
  61. Zheng, X., Gong, M., Zhang, Q., Tan, H., Li, L., Tang, Y., Li Z., Peng, M., Deng, W. (2022). Metabolism and regulation of ascorbic acid in fruits. Plants, 11, 1602. https://doi.org/10.3390/plants11121602 DOI: https://doi.org/10.3390/plants11121602

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.