Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 21 Nr 5 (2022)

Artykuły

The influence of silica upon quantitative, qualitative, and biochemical traits of tomato under water stress

DOI: https://doi.org/10.24326/asphc.2022.5.11
Przesłane: 10 listopada 2021
Opublikowane: 2022-10-28

Abstrakt

Water stress is by far the most serious limiting factor to tomato (Solanum lycopersicom) production, particularly in Iran where located in arid and semi-arid regions. Silicon (Si) is considered an effective element to mitigate the adverse effects of water stress by promoting plant growth and production. Therefore, the present study was designed to evaluate the effects of the foliar application of Si (0, 100, and 200 mg L–1) and three water regimes – no stress (100), mild stress (80%), and severe stress (60%) – on the growth parameters, the yield, and the fruit quality as well as antioxidant status of the tomato. The imposed water stress significantly increased the total soluble solids (TSS), the total acidity (TA), and the flavonoids as well as antioxidant defense parameters such as catalase (CAT) and peroxidase (POX), while the growth parameters (plant height and leaf number) and tomato yield were decreased. In contrast, the foliar application of Si (200 mg L–1) remarkably improved the total yield of tomatoes when exposed to water stress by improving the antioxidant enzyme activities and total flavonoid compounds. In addition, the application of Si could significantly improve the growth parameters (plant height and leaf number) and fruit quality (fruit firmness and size). As a result, the foliar application of Si could be suggested as an effective strategy for imparting water stress resistance in the tomato.

Bibliografia

  1. Abdelshafy, H., Hegemann, W., Teiner, A. (1994). Accumulation of metals by vascular plants. Environ. Manag. Health, 5, 21–24. https://doi.org/10.1108/09566169410057137 DOI: https://doi.org/10.1108/09566169410057137
  2. Agami, R.A. (2014). Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biol. Plant., 58, 341–347. https://doi.org/10.1007/s10535-014-0392-y DOI: https://doi.org/10.1007/s10535-014-0392-y
  3. Agarie, S., Uchida, H., Agata, W., Kubota, F., Kaufman, P.B. (1998). Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Prod. Sci., 1(2), 89–95. https://doi.org/10.1626/pps.1.89 DOI: https://doi.org/10.1626/pps.1.89
  4. Ahmad, Z., Warraich, E.A., Iqbal, M.A., Barutçular, C., Alharby, H., Bamagoos, A., Cig, F., El Sabagh, A. (2021). Foliage applied silicon ameliorates drought stress through physio-morphological traits, osmoprotectants and antioxidant metabolism of camelina (Camelina sativa L.) genotypes. Acta Sci. Pol. Hortorum Cultus, 20(4), 43–57. https://doi.org/10.24326/asphc.2021.4.4 DOI: https://doi.org/10.24326/asphc.2021.4.4
  5. Al-Huqail, A., El-Dakak, R.M., Sanad, M.N., Badr, R.H., Ibrahim, M.M., Soliman, D., Khan, F. (2020). Effects of climate temperature and water stress on plant growth and accumulation of antioxidant compounds in sweet basil (Ocimum basilicum L.) leafy vegetable. Scientifica, article ID 3808909. https://doi.org/10.1155/2020/3808909 DOI: https://doi.org/10.1155/2020/3808909
  6. Ali, E., Hassan, F. (2017). Water stress alleviation of roselle plant by silicon treatment through some physiological and biochemical responses. Ann. Res. Rev. Biol., 1–17. https://doi.org/10.9734/ARRB/2017/37670 DOI: https://doi.org/10.9734/ARRB/2017/37670
  7. Alsaeedi, A., El-Ramady, H., Alshaal, T., El-Garawany, M., Elhawat, N., Al-Otaibi, A. (2019). Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol. Biochem., 139, 1–10. https://doi.org/10.1016/j.plaphy.2019.03.008 DOI: https://doi.org/10.1016/j.plaphy.2019.03.008
  8. Araya, A., Stroosnijder, L., Girmay, G., and Keesstra, S. (2011). Crop coefficient, yield response to water stress and water productivity of teff (Eragrostis tef (Zucc.). Agric. Water Manag., 98(5), 775–783. https://doi.org/10.1016/j.agwat.2010.12.001 DOI: https://doi.org/10.1016/j.agwat.2010.12.001
  9. Attaran, H.R., Fatemi, F., Rasooli, A., Dadkhah, A., Mohammadi Malayeri, M.R., Dini, S. (2018). Zataria multiflora essential oil prevent iron oxide nanoparticles-induced liver toxicity in rat model. J. Med. Plants By-Prod., 7(1), 15–24. 10.22092/JMPB.2018.116724
  10. Barzegar, T., Esfahani, Z., Ghahramani, Z., Nikbakht, J. (2019). Investigation of some physiological and biochemical responses of Lycopersicon esculentum cv. Rio Grande to foliar application of biostimulant under deficit-irrigation stress. Plant Proc. Funct., 8(29), 230–239. Available: http://jispp.iut.ac.ir/article-1-852-fa.html
  11. Basu, S., Ramegowda, V., Kumar, A., Pereira, A. (2016). Plant adaptation to drought stress. F1000 Research, 5. DOI: https://doi.org/10.12688/f1000research.7678.1
  12. Beltagi, M. (2008). Exogenous ascorbic acid (Vitamin C) induced anabolic changes for salt tolerance in chick pea (Cicer arietinum L.) plants. Afr. J. Plant Sci., 2, 118–123. Available: https://academicjournals.org/article/article1380018084_Beltagi.pdf
  13. Bhatnagar-Mathur, P., Devi, M.J., Vadez, V., Sharma, K.K. (2009). Deferential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress. J. Plant Physiol., 166, 1207–1217. https://doi.org/10.1016/j.jplph.2009.01.001 DOI: https://doi.org/10.1016/j.jplph.2009.01.001
  14. Bordonaba, JG., Terry, LA. (2010). Manipulating the taste-related composition of strawberry fruits (Fragaria× ananassa) from different cultivars using deficit irrigation. Food Chem., 122, 1020–1026. https://doi.org/10.1016/j.foodchem.2010.03.060 DOI: https://doi.org/10.1016/j.foodchem.2010.03.060
  15. Cantore, V., Lechkar, O., Karabulut, E., Sellami, M., Albrizio, R., Boari, F., Stellacci, A., Todorovic, M. (2016). Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of “cherry” tomato (Solanum lycopersicum L.). Agric. Water Manag., 167, 53–61. DOI: https://doi.org/10.1016/j.agwat.2015.12.024
  16. Cao, Y., Luo, Q., Tian, Y., Meng, F. (2017). Physiological and proteomic analyses of the drought stress response in Amygdalus Mira (Koehne) Yü et Lu roots. BMC Plant Biol., 17, 53. https://doi.org/10.3389/fpls.2021.620499 DOI: https://doi.org/10.1186/s12870-017-1000-z
  17. Chen, J., Kang, S., Du, T., Qiu, R., Guo, P., Chen, R. (2013). Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agric. Water Manag., 129,152–162. https://doi.org/10.1016/j.agwat.2013.07.011 DOI: https://doi.org/10.1016/j.agwat.2013.07.011
  18. Çolak, Y.B., Yazar, A., Çolak, İ., Akça, H., Duraktekin, G. (2015). Evaluation of crop water stress index (CWSI) for eggplant under varying irrigation regimes using surface and subsurface drip systems. Agric. Agric. Science Proc., 4, 372–382. https://doi.org/10.1016/j.aaspro.2015.03.042 DOI: https://doi.org/10.1016/j.aaspro.2015.03.042
  19. Cui, J., Shao, G., Lu, J., Keabetswe, L., Hoogenboom, G. (2020). Yield, quality and drought sensitivity of tomato to water deficit during different growth stages. Sci. Agric., 77(2). https://doi.org/10.1590/1678-992x-2018-0390 DOI: https://doi.org/10.1590/1678-992x-2018-0390
  20. Das, K., Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2, 53. https://doi.org/10.3389/fenvs.2014.00053 DOI: https://doi.org/10.3389/fenvs.2014.00053
  21. De Araujo Rufino, C., Fernandes-Vieira, J., Martín-Gil, J., Abreu Júnior, J.D.S., Tavares, L.C., Fernandes-Correa, M., Martín-Ramos, P. (2018). Water stress influence on the vegetative period yield components of different maize genotypes. Agronomy, 8(8), 151. DOI: https://doi.org/10.3390/agronomy8080151
  22. De Camargo, M.S., Bezerra, B.K.L., Holanda, L.A., Oliveira, A.L., Vitti, A.C., Silva, M.A., (2019). Silicon fertilization improves physiological responses in sugarcane cultivars grown under water deficit. J. Soil Sci. Plant Nutr., 19(1), 81–91. https://doi.org/10.1007/s42729-019-0012-1 DOI: https://doi.org/10.1007/s42729-019-0012-1
  23. Dehghanipoodeh, S., Ghobadi, C., Baninasab, B., Gheysari, M., Shiranibidabadi, S. (2018). Effect of silicon on growth and development of strawberry under water deficit conditions. Hortic. Plant J., 4(6), 226–232. https://doi.org/10.1016/j.hpj.2018.09.004 DOI: https://doi.org/10.1016/j.hpj.2018.09.004
  24. Emam, M.M., Khattab, H.E., Helal, N.M., Deraz, A.E. (2014). Effect of selenium and silicon on yield quality of rice plant grown under drought stress. Aust. J. Crop Sci., 8, 596–605. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1064.658&rep=rep1&type=pdf
  25. Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M.Z., (2017). Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci., 8, 1147. https://doi.org/10.3389/fpls.2017.01147 DOI: https://doi.org/10.3389/fpls.2017.01147
  26. Faramarzi, M., Yang, H., Schulin, R., Abbaspour, K.C. (2010). Modeling wheat yield and crop water productivity in Iran. Implications of agricultural water management for wheat production. Agric. Water Manag., 97(11), 1861–1875. https://doi.org/10.1016/j.agwat.2010.07.002 DOI: https://doi.org/10.1016/j.agwat.2010.07.002
  27. Farooq, A., Bukhari, S.A., Akram, N.A., Ashraf, M., Wijaya, L., Alyemeni, M.N., Ahmad, P., 2020. Exogenously applied ascorbic acid-mediated changes in osmo protection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.). Plants, 9(1), 104. https://doi.org/10.3390/plants9010104 DOI: https://doi.org/10.3390/plants9010104
  28. Fatemi, F., Abdollahi, M. R., Mirzaie-asl, A., Dastan, D., Garagounis, C., Papadopoulou, K. (2019). Identification and expression profiling of rosmarinic acid biosynthetic genes from Satureja khuzistanica under carbon nanotubes and methyl jasmonate elicitation. Plant Cell Tiss. Organ Cult (PCTOC), 136(3), 561–573. DOI: https://doi.org/10.1007/s11240-018-01537-8
  29. Fatemi, F., Abdollahi, M.R., Mirzaie-Asl, A., Dastan, D., Papadopoulou, K. (2020). Phytochemical, antioxidant, enzyme activity and antifungal properties of Satureja khuzistanica in vitro and in vivo explants stimulated by some chemical elicitors, Pharmaceut. Biol., 58(1), 286–296. https://doi.org/10.1080/13880209.2020.1743324 DOI: https://doi.org/10.1080/13880209.2020.1743324
  30. Ghanati, F., Morita, A., Yokota, H. (2002). Induction of suberin and increase of lignin content by excess boron in tobacco cells. Soild Sci. Plant Nutrit., 48, 357–364. https://doi.org/10.1080/00380768.2002.10409212 DOI: https://doi.org/10.1080/00380768.2002.10409212
  31. Gharibi, S., Tabatabaei, B.E.S., Saeidi, G., Goli, S.A.H. (2016). Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Appl. Biochem. Biotechnol., 178, 796–809. https://doi.org/10.1007/s12010-015-1909-3 DOI: https://doi.org/10.1007/s12010-015-1909-3
  32. Giné-Bordonaba, J., Terry, L.A. (2016). Effect of deficit irrigation and methyl jasmonate application on the composition of strawberry (Fragaria × ananassa) fruit and leaves, Sci. Hortic., 199, 63–70. Available: http://dspace.lib.cranfield.ac.uk/handle/1826/11334 DOI: https://doi.org/10.1016/j.scienta.2015.12.026
  33. Gong, H., Chen, K. (2012). The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol. Plant., 34(4), 1589–1594. DOI: https://doi.org/10.1007/s11738-012-0954-6
  34. González-Moscoso, M., Martínez-Villegas, N.V., Cadenas-Pliego, G., Benavides-Mendoza, A., Rivera-Cruz, M.D.C., González-Morales, S., Juárez-Maldonado, A. (2019). Impact of silicon nanoparticles on the antioxidant compounds of tomato fruits stressed by arsenic. Foods, 8(12), 612. https://doi.org/10.3390/foods8120612 DOI: https://doi.org/10.3390/foods8120612
  35. Gunes, A., Inala, A., Bagcia, E.G., Cobana, S., Pilbeam, D. (2007). Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxicity. Sci. Hortic., 113, 113–119. https://doi.org/10.1016/j.scienta.2007.03.009 DOI: https://doi.org/10.1016/j.scienta.2007.03.009
  36. Hao, L., Duan, A.W., Li, F.S., Sun, J.S., Wang, Y.C., Sun, C.T. (2013). Drip irrigation scheduling for tomato grown in solar greenhouse based on pan evaporation in North China Plain. J. Int. Agric., 12(3), 520–531. https://doi.org/10.1016/S2095-3119(13)60253-1 DOI: https://doi.org/10.1016/S2095-3119(13)60253-1
  37. Hassan, F., Ali, E., El-Zahrany, O. (2013). Effect of amino acids application and different water regimes on the growth and volatile oil of Rosmarinus officinalis L. plant under Taif region conditions. Eur. J. Sci. Res., 101(3), 346–359.
  38. Hellal, F.A., Zeweny, R.M., Yassen, A.A. (2012). Evaluation of nitrogen and silicon application for enhancing yield production and nutrient uptake by wheat in clay soil. J. App. Sci. Res. 8, 686–692. Available: http://www.aensiweb.com/old/jasr/jasr/2012/686-692.pdf
  39. Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., Sharma, A. (2020). The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Appl. Sci., 10(16), 5692. https://doi.org/10.3390/app10165692 DOI: https://doi.org/10.3390/app10165692
  40. Kaya, C., Ashraf, M., Wijaya, L., Ahmad, P. (2019). The putative role of endogenous nitric oxide in brassinosteroid-induced antioxidant defence system in pepper (Capsicum annuum L.) plants under water stress. Plant Physiol. Biochem., 143, 119–128. https://doi.org/10.1016/j.plaphy.2019.08.024 DOI: https://doi.org/10.1016/j.plaphy.2019.08.024
  41. Klunklin, W., Savage, G. (2017). Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions. Foods, 6(56), 1–10. https://doi.org/10.3390/foods6080056 DOI: https://doi.org/10.3390/foods6080056
  42. Kumar, V., Kumar, P., Khan, A. (2020). Optimization of PGPR and silicon fertilization using response surface methodology for enhanced growth, yield and biochemical parameters of French bean (Phaseolus vulgaris L.) under saline stress. Biocatal. Agric. Biotechnol., 23, 101463. https://doi.org/10.1016/j.bcab.2019.101463 DOI: https://doi.org/10.1016/j.bcab.2019.101463
  43. Liu, P., Yin, L., Deng, X., Wang, S., Tanaka, K., Zhang, S. (2014). Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. J. Exp. Bot., 65(17), 4747–4756. https://doi.org/10.1093/jxb/eru220 DOI: https://doi.org/10.1093/jxb/eru220
  44. Madani, K. (2014). Water management in Iran: what is causing the looming crisis? J. Environ. Stud. Sci., 4(4), 315–328. https://doi.org/10.1007/s13412-014-0182-z DOI: https://doi.org/10.1007/s13412-014-0182-z
  45. Maghsoudi, K., Emam, Y., Ashraf, M., Arvin, M.J. (2019). Alleviation of field water stress in wheat cultivars by using silicon and salicylic acid applied separately or in combination. Crop Past. Sci., 70(1), 36–43. DOI: https://doi.org/10.1071/CP18213
  46. Mauad, M., Crusciol, C.A.C., Nascente, A.S., Grassi Filho, H., Lima, G.P.P. (2016). Effects of silicon and drought stress on biochemical characteristics of leaves of upland rice cultivars. Rev. Ciênc. Agron., 47, 532–539. https://doi.org/10.5935/1806-6690.20160064 DOI: https://doi.org/10.5935/1806-6690.20160064
  47. McWilliams, D. (2003). Drought strategies for cotton, cooperative extension service circular 582. College of Agriculture and Home Economics, New Mexico State University, USA. Available: http://contentdm.nmsu.edu/cdm/ref/collection/AgCircs/id/9780
  48. Ming, D., Pei, Z., Naeem, M., Gong, H., Zhou, W. (2012). Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J. Agron. Crop Sci., 198(1), 14–26. https://doi.org/10.1111/j.1439-037X.2011.00486.x DOI: https://doi.org/10.1111/j.1439-037X.2011.00486.x
  49. Mirás-Avalos, J.M., Intrigliolo, D.S. (2017). Grape composition under abiotic constrains: water stress and salinity. Front. Plant Sci., 8, 851. https://doi.org/10.3389/fpls.2017.00851 DOI: https://doi.org/10.3389/fpls.2017.00851
  50. Mohamed, H.I., Akladious, S.A. (2014). Influence of garlic extract on enzymatic and non-enzymatic antioxidants in soybean plants (Glycine max) grown under drought stress. Life Sci. J., 11(3s), 46–58. Available: http://www.lifesciencesite.com/lsj/life1103s/009_22962life1103s14_46_58.pdf
  51. Moyer, C., Peres, N., Datnoff, L., Simonne, E., Deng, Z. (2008). Evaluation of silicon for managing powdery mildew on gerbera daisy. J. Plant Nutr., 31, 2131–2144. https://doi.org/10.1080/01904160802459641 DOI: https://doi.org/10.1080/01904160802459641
  52. Murshed, R., Lopez-Lauri, F., Sallanon, H. (2013). Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicon L, cv. Micro-tom). Physiol. Mol. Biol. Plants, 19(3), 363–378. https://doi.org/10.1007/s12298-013-0173-7 DOI: https://doi.org/10.1007/s12298-013-0173-7
  53. Ostrowska, A., Gawlinski, S., Szczubialka, Z. (1991). Methods of analysis and evaluation of soil and plants. IOŚ, Warszawa [in Polish].
  54. Özbahçe, A., Tari, A.F., Yücel, S., Oktay, O.K.U.R., Padem, H. (2014). Influence of limited water stress on yield and fruit quality of melon under soil-borne pathogens. Toprak Su Derg., 3(1), 70–76. https://doi.org/10.21657/tsd.70454 DOI: https://doi.org/10.21657/tsd.70454
  55. Pandey, S., Fartyal, D., Agarwal, A., Shukla, T., James, D., Kaul, T., Negi, Y.K., Arora, S. Reddy, M.K. (2017). Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front. Plant Sci., 8, 581. https://doi.org/10.3389/fpls.2017.00581 DOI: https://doi.org/10.3389/fpls.2017.00581
  56. Patanè, C., Cosentino, S. (2010). Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agric. Water Manag., 97(1), 131–138. https://doi.org/10.1016/j.agwat.2009.08.021 DOI: https://doi.org/10.1016/j.agwat.2009.08.021
  57. Patanè, C., Tringali, S., Sortino, O. (2011). Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hortic., 129(4), 590–596. https://doi.org/10.1016/j.scienta.2011.04.030 DOI: https://doi.org/10.1016/j.scienta.2011.04.030
  58. Rangana (1979). Manual analysis of fruits and vegetables product. Tata McGraw Hill, New Delhi, 2–95, 634.
  59. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorisation assay. Free Rad. Biol. Med., 26, 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3 DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
  60. Shafiq, S., Akram, N.A., Ashraf, M., Arshad, A. (2014). Synergistic effects of drought and ascorbic acid on growth, mineral nutrients and oxidative defense system in canola (Brassica napus L.) plants. Acta Physiol. Plant, 36, 1539–1553. https://doi.org/10.1007/s11738-014-1530-z DOI: https://doi.org/10.1007/s11738-014-1530-z
  61. Sharma, A., Wang, J., Xu, D., Tao, S., Chong, S., Yan, D., Li, Z., Yuan, H., Zheng, B. (2020). Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Sci. Total Environ., 713, 136675. https://doi.org/10.1016/j.scitotenv.2020.136675 DOI: https://doi.org/10.1016/j.scitotenv.2020.136675
  62. Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot., article ID 217037. https://doi.org/10.1155/2012/217037 DOI: https://doi.org/10.1155/2012/217037
  63. Shi, Y., Zhang, Y., Han, W., Feng, R., Hu, Y., Guo, J., Gong, H. (2016). Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Front. Plant Sci., 7, 196. https://doi.org/10.3389/fpls.2016.00196 DOI: https://doi.org/10.3389/fpls.2016.00196
  64. Shinde, S., Kachare, D., Satbhai, R., Naik, R. (2018). Water stress induced proline accumulation and antioxidative enzymes in groundnut (Arachis hypogaea L.). Leg. Res. Int. J., 41(1), 67–72. https://doi.org/10.18805/LR-3582 DOI: https://doi.org/10.18805/LR-3552
  65. Shojaie, B., Mostajeran, A., Ghanadian, M. (2016). Flavonoid dynamic responses to different drought conditions: amount, type, and localization of flavonols in roots and shoots of Arabidopsis thaliana L. Turk. J. Biol., 40(3), 612–622. https://doi.org/10.3906/biy-1505-2 DOI: https://doi.org/10.3906/biy-1505-2
  66. Silva, C.J.D., Frizzone, J.A., Silva, C.A.D., Golynski, A., da Silva, L.F., Megguer, C.A. (2019). Tomato yield as a function of water depths and irrigation suspension periods. Rev. Bras. Eng. Agríc. Ambient., 23(8), 591–597. https://doi.org/10.1590/1807-1929/agriambi.v23n8p591-597 DOI: https://doi.org/10.1590/1807-1929/agriambi.v23n8p591-597
  67. Sirisuntornlak, N., Ghafoori, S., Datta, A., Arirob, W. (2019). Seed priming and soil incorporation with silicon influence growth and yield of maize under water-deficit stress. Arch. Agron. Soil Sci., 65(2), 197–207. https://doi.org/10.1080/03650340.2018.1492713 DOI: https://doi.org/10.1080/03650340.2018.1492713
  68. Smirnoff, N., Wheeler, G. (2000). Ascorbic acid in plants: biosynthesis and function. Crit. Rev. Biochem. Mol. Biol., 35, 291–314. https://doi.org/10.1080/10409230008984166 DOI: https://doi.org/10.1080/10409230008984166
  69. Sonobe, K., Hattori, T., An, P., Tsuji, W., Eneji, A.E., Kobayashi, S., Kawamura, Y., Tanaka, K., Inanaga, S. (2010). Effect of silicon application on sorghum root responses to water stress. J. Plant Nutr., 34(1), 71–82. https://doi.org/10.1080/01904167.2011.531360 DOI: https://doi.org/10.1080/01904167.2011.531360
  70. Tripathi, D.K., Singh, V.P., Prasad, S.M., Chauhan, D.K., Dubey, N.K. (2015). Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol. Biochem., 96, 189–198. https://doi.org/10.1016/j.plaphy.2015.07.026 DOI: https://doi.org/10.1016/j.plaphy.2015.07.026
  71. Tubaña, B.S., Heckman, J.R. (2015). Silicon in soils and plants. In: Silicon and plant diseases, Rodrigues, F.A., Datnoff, L.E. (eds.). Springer, Cham, 7–51. DOI: https://doi.org/10.1007/978-3-319-22930-0_2
  72. Ullah, U., Ashraf, M., Shahzad, S., Siddiqui, A., Awais Piracha, M., Suleman, M. (2016). Growth behavior of tomato (Solanum lycopersicum L.) under drought stress in the presence of silicon and plant growth promoting rhizobacteria. Soil Environ., 35(1), 65–75.
  73. Van Bockhaven, J., De Vleesschauwer, D., Hofte, M. (2013). Towards establishing broad spectrum disease resistance in plants: silicon leads the way. J. Exp. Bot., 64,1281–1293. DOI: https://doi.org/10.1093/jxb/ers329
  74. Verma, K.K., Wu, K.-C., Singh, P., Malviya, M.K., Singh, R.K., Song, X.-P., Li, Y.-R. (2019). The protective role of silicon in sugarcane under water stress: photosynthesis and antioxidant enzymes. Biomed. J. Sci. Tech. Res, 15, 26717. https://doi.org/10.26717/BJSTR.2019.15.002685 DOI: https://doi.org/10.26717/BJSTR.2019.15.002685
  75. Waqas, W., Brust, G.E., Perring, T.M. (eds). (2017). Sustainable management of arthropod pests of tomato. Academic Press, London–San Diego–Cambridge–Kidlington, 17.
  76. Xiukang, W., Yingying, X. (2016). Evaluation of the effect of irrigation and fertilization by drip fertigation on tomato yield and water use efficiency in greenhouse. Int. J. Agron., 4(16), 1–10. https://doi.org/10.1155/2016/3961903 DOI: https://doi.org/10.1155/2016/3961903
  77. Zahedi, S.M., Moharrami, F., Sarikhani, S. Padervand, M. (2020). Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Sci. Rep., 10(1), 1–18. https://doi.org/10.1038/s41598-020-74273-9 DOI: https://doi.org/10.1038/s41598-020-74273-9
  78. Zhang, W., Xie, Z., Wang, L., Li, M., Lang, D., Zhang, X. (2017). Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment. J. Plant Res.,130(3), 611–624. https://doi.org/10.1007/s10265-017-0927-3 DOI: https://doi.org/10.1007/s10265-017-0927-3
  79. Zhen, A., Bie, Z.L., Huang, Y., Liu, Z.X., Fan, M.L. (2012). Effects of 5-aminolevulinic acid on the H2O2-content and antioxidative enzyme gene expression in NaCl-treated cucumber seedlings. Biol. Plant, 56, 566–570. https://doi.org/10.1007/s10535-012-0118-y DOI: https://doi.org/10.1007/s10535-012-0118-y
  80. Zhu, Y., Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agron. Sust. Dev., 34(2), 455–472. https://doi.org/10.1007/s13593-013-0194-1 DOI: https://doi.org/10.1007/s13593-013-0194-1
  81. Zomorodi, S., Noorjo, A., Alami, A. (2006). Investigation the effect of deficit irrigation on quantity and quality and preserving potential of tomato. J. Agric. Engineer. Res., 7(27), 19–28. https://doi.org/10.3390/agriculture10070297 DOI: https://doi.org/10.3390/agriculture10070297

Downloads

Download data is not yet available.

Podobne artykuły

<< < 48 49 50 51 52 53 54 55 56 57 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.