Skip to main navigation menu Skip to main content Skip to site footer

Vol. 13 No. 2 (2014)

Articles

GROWTH RATE OF SWEET BASIL AND LEMON BALM PLANTS GROWN UNDER FLUORESCENT LAMPS AND LED MODULES

Submitted: November 22, 2020
Published: 2014-04-30

Abstract

The aim of the experiment was to compare the effect of LED and fluorescent lamps as sources of light on growth and development of sweet basil (Ocimum basilicum L.) and lemon balm (Melissa officinalis L.). The experiment was conducted in growth chambers under controlled conditions. Plant response to the applied light sources was found to be varied. Basil plants produced greater fresh herbage mass as well as shoot height under Fl lamps. The employed sources of light did not have a significant effect on leaf area or photosynthesis rate in these plants. Light sources did not influence the growth rate of lemon balm plants, but these plants were characterised by a greater net photosynthesis value when grown under FL tubes as compared to LEDs. It can be concluded that the response of plants to the applied light is individual and depends on the species.

References

Alokam S., Chinnappa C.C., Reid D.M., 2002. Red/far-red light mediated stem elongation and anthocyanin accumulation in Stellaria longipes: differential response of alpine and prairie ecotypes. Canad. J. Bot. 80, 72–81.
Brazaitytė A., Duchovskis P., Urbonavičiūtė A., Samuolienė G., Jankauskienė J., Bliznikas Z., Novičkovas A., Breivė K., Kasiulevičiūtė-Bonakėrė A., Žukauskas A., 2009. The effect of light-emitting diodes lighting on cucumber transplants and after-effect on yield. Zemdirbyste-Agriculture 96(3), 102–118.
Brazaitytė A., Duchovskis P., Urbonavičiūtė A., Samuolienė G., Jankauskienė J., Sakalauskaitė J., Šabajevienė G., Sirtautas R., Novičkovas A., 2010. The effect of light-emitting diodes lighting on the growth of tomato transplants. Zemdirbyste-Agriculture 97(2), 89–98.
de Groot C.C., Marcelis L.F.M., van den Boogaard R., Lambers H., 2001 Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light. Plant Cell Environ. 24, 1309–1317.
Folta K.M., Childers K.S., 2008. Light as a growth regulator: controlling plant biology with narrow-bandwidth solid-state lighting system. Hort Sci. 43(7), 1957–1964.
Folta K.M., Maruhnich S.A., 2007. Green light: a signal to slow down or stop. J. Exp. Bot. 58(12), 3099–3111.
Franklin K.A., Whitelam G.C., 2005. Phytochromes and shade-avoidance responses. Ann. Bot. (Lond.) 96, 169–175.
Głowacka B., 2008. Wpływ składu spektralnego światła na wzrost rozsady bazylii pospolitej (Ocimum basilicum L), melisy lekarskiej (Melissa officinalis L.) i ogórecznika lekarskiego (Borago officinalis L.). Zesz. Post. Nauk Rol. 527, 131–138.
Heo J., Lee C., Paek K., 2002. Characteristics of growth and flowering on some bedding plants grown in mixing fluorescent tube and light-emitting diode. Acta Hort., 580, 77–82.
Hunt R., 1982. Plant growth curves, the functional approach to plant growth analysis. Edward Arnold, Sheffield, 16–46.
Jao R.C., Fang W., 2003. An adjustable light source for photo-phyto related research and young plant production. Appl. Eng. Agr. 19(5), 601–608.
Johkan M., Shoji K., Goto F., Hashida S., Yoshihsra T., 2010. Blue light – emitting diode irradiation of seedlings improves seedling quality of growth after transplanting in red leaf lettuce. Hort Sci. 45, 1809–1814.
Kim H.H., Goins G.D., Wheeler R.M., Sager J.C., 2004a. Stomatal conductance of lettuce grown under or exposed to different light qualities. Ann. Bot. (Lond.) 94, 691–697.
Kim S.J., Hahn E.J., Heo J.W., Peak K.Y., 2004b. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hort. 101, 143–151.
Kozai T., Ohyama K., Chun C., 2006. Commercialized closed systems with artificial lighting for plant production. Acta Hort. 711, 61–70.
Li H., Tang C., Xu Z., Liu X., Han X., 2012. Effects of different light sources on the growth of non-heading chinese cabbage (Brassica campestris L.). J. Agr. Sci. 4(4), 262–273.
Liu X., Guo S., Xu Z., Jiao X., Takafumi T., 2011. Regulation of chloroplast ultrastructure, crosssection anatomy of leaves, and morphology of stomata of cherry tomato by different light irradiations of light-emitting diodes. HortSci. 46(2), 217–221.
Mao L.Z., Lu H.F., Wang Q., Cai M.M., 2007. Comparative photosynthesis characteristics of Calycanthus chinensis and Chimonanthus praecox. Photosynthetica 45(4), 601–605.
Massa G.D., Kim H.H., Wheeler R.M., Mitchell C.A., 2008. Plant productivity in response to LED lighting. HortSci. 43(7), 1951–1956.
Matsuda R., Ohashi-Kaneko K., Fujiwara K., Kurata K., 2008. Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves. Plant Cell Physiol. 49, 664–670.
Maxwell K., Johnson G.N., 2000. Chlorophyll fluorescence – a practical guide. J. Exp. Bot. 50, 659–668.
Morrow R.C., 2008. LED lighting in horticulture. HortSci. 43(7), 1947–1950.
Stutte G.W., 2009. Light-emitting diodes for manipulating the phytochrome apparatus. HortSci. 44, 231–234.
Wu F., Li P., Wu Y., 2012. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. HortSci. 135, 45–51.
Yao Y., Yang Y.J., Ren J., Li C., 2006. UV-spectra dependence of seedling injury and photosynthetic pigment change in Cucumis sativus and Glycine max. Env. Exp. Bot. 57, 160–167.
Ying L.X., ShiRong G., ZhiGang X., XueLei J., 2011. Regulation of chloroplast ultrastructure, cross-section anatomy of leaves, and morphology of stomata of cherry tomato by different light irradiations of light-emitting diodes. HortSci 46(2), 217–221.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.