Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 22 Nr 5 (2023)

Artykuły

Physiochemical and mineral characterization of unexplored local grapes (Vitis vinifera L.) cultivars growing in Balochistan province, Pakistan

DOI: https://doi.org/10.24326/asphc.2023.4827
Przesłane: 4 lipca 2022
Opublikowane: 2023-10-30

Abstrakt

Grapes (Vitis vinifera L.) are highly valuable crops enriched with minerals, vitamins, phenolics, and antioxidants required for daily human activities and to prevent cancer and cardiovascular diseases. The objective of this study was to elucidate the physicochemical and mineral evaluation of seven neglected local grape cultivars (‘Kishmish’, ‘Sra Kishmish’, ‘Askari’, ‘Sahibi’, ‘Haita’, ‘Sundar Khani’ and ‘Toran’) growing in Baluchistan, as it can help in future breeding, processing, and species conservation. Therefore, these cultivars were evaluated for different physical, biochemical, and availability of macro– and micro–mineral contents. In physical evaluation, the local cultivar ‘Haita’ showed maximum bunch length (19.72 cm) and bunch width (11.88 cm), while the highest bunch weight (527.33 g) was recorded in ‘Sahibi’. Similarly, significant differences were noted in biochemical traits, and maximum total soluble solids (24.76%) and titratable acidity (1.58%) were observed in ‘Sundar Khani’, while the highest vitamin C (26.17 mg 100 g–1), total sugars (30.26%) in Sundar Khani, and nonreducing sugars (8.79%) were recorded in ‘Haita’. The cultivars growing in Balochistan also showed variations in phenolics (113.79–346.50 mg GAE L–1) and antioxidants (85.77– 90.87%). Likewise, the concentrations of macro- and microelements were also highly variable in these cultivars. Overall, among these cultivars, ‘Toran’ performed better in the agroclimatic conditions of Balochistan, as it has high yield attributes such as berry length, width, and weight. Moreover, it was also enriched with total soluble solids, antioxidants, and calcium contents.

Bibliografia

  1. Affonfere, M., Chadare, F.J., Fassinou, F.T., Linnemann, A.R., Duodu, K.G. (2021). In-vitro digestibility methods and factors affecting minerals bioavailability: a review. Food Rev. Int., 39(2), 1014–1042. https://10.1080/87559129.2021.192869 DOI: https://doi.org/10.1080/87559129.2021.1928692
  2. Ainsworth, E.A., Gillespie, K.M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc., 2(4), 875–877. https://doi.org/10.1038/nprot.2007.102 DOI: https://doi.org/10.1038/nprot.2007.102
  3. Akram, M.T., Qadri, R.W.K., Jaskani, M.J., Awan, F.S. (2019). Ampelographic and genetic characterization of grapes genotypes collected from the Potohar region of Pakistan. Pak. J. Agri. Sci., 56(3), 595–605. http://dx.doi.org/10.21162/PAKJAS/19.8000
  4. Akram, M.T., Qadri, R.W.K., Jaskani, M.J., Awan, F.S. (2020). Phenological and physicochemical evaluation of table grapes germplasm growing under arid subtropical climate of Pakistan. Pak. J. Bot., 52(3), 1011–1018. http://dx.doi.org/10.30848/PJB2020-3(7) DOI: https://doi.org/10.30848/PJB2020-3(7)
  5. Ali, A., Deokule, S.S. (2009). Studies on nutritional values of some wild edible plants from Iran and India. Pak. J. Nutr., 8(1), 26–31. https://doi.org/10.3923/pjn.2009.26.31 DOI: https://doi.org/10.3923/pjn.2009.26.31
  6. Aponso, M.M.W., Marapana, R.A.U.J., Manawaduge, R. (2017). Physicochemical analysis of grape juice from Israel blue (Vitis vinifera L.) grape cultivar under different processing conditions and a comparison with Red lobe and Michele Palieri grape varieties. J. Pharmacogn. Phytochem., 6(3), 381–385.
  7. Arsad, P., Sukor, R., Ibadullah, W.Z.W., Mustapha, N.A., Meor-Hussin, A.S. (2015). Effects of enzymatic treatment on physicochemical properties of sugar palm fruit juice. Int. J. Adv. Sci. Eng. Inf. Technol., 5(5), 308–312. http://dx.doi.org/10.18517/ijaseit.5.5.577 DOI: https://doi.org/10.18517/ijaseit.5.5.577
  8. Arslan, E., Yener, M.E., Esin, A. (2005). Rheological characterization of tahin/pekmez (sesame paste/concentrated grape juice) blends. J. Food. Eng., 69(2), 167–172. https://doi.org/10.1016/j.jfoodeng.2004.08.010 DOI: https://doi.org/10.1016/j.jfoodeng.2004.08.010
  9. Ates, F., Coban, H., Kara, Z., Sabir, A. (2011). Ampelographic characterization of some grape cultivars (Vitis vinifera L.) grown in south-western region of Turkey. Bulg. J. Agric. Sci., 17(3), 314–324. https://doi.org/10.1016/j.jfoodeng.2004.08.010 DOI: https://doi.org/10.1016/j.jfoodeng.2004.08.010
  10. Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity LWT Food. Sci. Technol., 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5 DOI: https://doi.org/10.1016/S0023-6438(95)80008-5
  11. Campbell, J., Sarkhosh, A., Habibi, F., Gajjar, P., Ismail, A., Tsolova, V., El–Sharkawy, I. (2021). Evaluation of biochemical juice attributes and color-related traits in muscadine grape population. Foods, 10(5), 1101. https://doi.org/10.3390/foods10051101 DOI: https://doi.org/10.3390/foods10051101
  12. Champa, W.A.H. (2015). Pre and postharvest practices for quality improvement of table grapes (Vitis vinifera L.). J. Natn. Sci. Foundation Sri Lanka, 43(1), 3–9. https://doi.org/10.4038/jnsfsr.v43i1.7921 DOI: https://doi.org/10.4038/jnsfsr.v43i1.7921
  13. Chapman, H.D., Parker, E.R. (1942). Weekly absorption of nitrate by young, bearing orange trees growing out of doors in solution cultures. Plant. Physiol., 17(3), 366–370. https://doi.org/10.1104/pp.17.3.366 DOI: https://doi.org/10.1104/pp.17.3.366
  14. Chapman, H.D., Parker, F. (1961). Determination of NPK method of analysis for soil, plant and waters (Pub. Div. Agri. Uni. California, USA, 1961), 150–179.
  15. Crisosto, C.H., Smilanick, J.L. (2002). New technologies for reduction of damage by Botrytis cinerea in preservation of table grapes. Riv. fruttic. ortofloric., 64, 30–32.
  16. Dani, C., Oliboni, L.S., Pra, D., Bonatto, D., Santos, C.E.I., Yoneama, M.L., Dias, J.F., Salvador, M., Henriques, J.A.P. (2012). Mineral content is related to antioxidant and antimutagenic properties of grape juice. Genet. Mol. Res., 11(3), 3154–3163. https://doi.org/10.4238/2012.september.3.4 DOI: https://doi.org/10.4238/2012.September.3.4
  17. Davies, T.J., Savolainen, V. (2006). Neutral theory, phylogeneies and the relationship between phenotypic change and evolutionary rates. Evolution, 60(3), 476–483. https://doi.org/10.1111/j.0014-3820.2006.tb01129.x DOI: https://doi.org/10.1111/j.0014-3820.2006.tb01129.x
  18. Demir, F., Kipcak, A.S., Ozdemir, O.D., Derun, E.M. (2020). Determination of essential and non–essential element concentrations and health risk assessment of some commercial fruit juices in Turkey. J. Food Sci. Technol., 57(12), 4432–4442. https://doi.org/10.1007/s13197-020-04480-9 DOI: https://doi.org/10.1007/s13197-020-04480-9
  19. Fahmi, A.I., Nagaty, M.A., El-Shehawi, A.M. (2012). Fruit quality of Taif grape (Vitis vinifera L.) cultivars. J. Am. Sci., 8(5), 590–599.
  20. Garrido, M.D., Auqui, M., Martí, N., Linares, M.B. (2011). Effect of two different red grape pomace extracts obtained under different extraction systems on meat quality of pork burgers. LWT– Food Sci. Technol., 44(10), 2238–2243. https://doi.org/10.1016/j.lwt.2011.07.003 DOI: https://doi.org/10.1016/j.lwt.2011.07.003
  21. Gorgulu, T.Y., Ozdemir, O.D., Kıpcak, A.S., Piskin, M.B., Derun, E.M. (2016). The effect of lemon on the essential element concentrations of herbal and fruit teas. Appl. Biol. Chem., 59, 425–431. https://doi.org/10.1007/s13765-016-0161-z DOI: https://doi.org/10.1007/s13765-016-0161-z
  22. Gurak, P.D., Cabral, L.M., Leao, M.H.M.R., Matta, V.M., Freitas, S.P. (2010). Quality evaluation of grape juice concentrated by reverse osmosis. J. Food Eng., 96(3), 421–426. https://doi.org/10.1016/j.jfoodeng.2009.08.024 DOI: https://doi.org/10.1016/j.jfoodeng.2009.08.024
  23. Harmankaya, M., Gezgin, S, Ozcan, M.M. (2012). Comparative evaluation of some macro- and microelement and heavy metal contents in commercial fruit juices. Environ. Monit. Assess, 184(9), 5415–5420. https://doi.org/10.1007/s10661-011-2349-3 DOI: https://doi.org/10.1007/s10661-011-2349-3
  24. Hegedus, A., Engel, R., Abranko, L., Balogh, E., Blazovics, A., Herman, R., Halasz, J., Ercisl, S., Pedryc, A., Banyai, E.S. (2010). Antioxidant and antiradical capacities in apricot (Prunus armeniaca L.) fruits: Variation from Genotypes, Years, and Analytical Methods. J. Food Sci., 75(9), 722–730. https://doi.org/10.1111/j.1750-3841.2010.01826.x DOI: https://doi.org/10.1111/j.1750-3841.2010.01826.x
  25. Hmid, I., Elothmani, D., Hanine, H., Qukabali, A. (2016). Effects of enzymatic clarification of pomegranate juice by protease and pectinase treatments. J. Bio Innov., 5, 506–515.
  26. Hortwitz, W. (1960). Official and tentatative method of analysis (Association of Official Agriculture Chemists, Washington, DC, 1960). Jaiswal, D.K., Krishna, R., Chouhan, G.K., Pereira, A.P.A.,
  27. Ade, A.B., Prakash, S., Verma, S.K., Prasad, R., Yadav, J., Verma, J.P. (2022). Bio-fortification of minerals in crops: Current scenario and future prospects for sustainable agriculture and human health. Plant Growth Regul., 98(1), 5–22. https://doi.org/10.1007/s10725-022-00847-4 DOI: https://doi.org/10.1007/s10725-022-00847-4
  28. Jalbani, N., Ahmed, F., Kazi, T.G., Rashid, U., Munshi, A.B., Kandhro, A. (2010). Determination of essential elements (Cu, Fe and Zn) in juices of commercially available in Pakistan. Food Chem. Toxicol., 48(10), 2737–2740. https://doi.org/10.1016/j.fct.2010.06.048 DOI: https://doi.org/10.1016/j.fct.2010.06.048
  29. Joshi, V., Kumar, M., Debnath, M, Pattanashetti, S., Variath, M.T., Khadakabhavi, S. (2015). Multivariate analysis of colored and white grape grown under semi-arid tropical conditions of Peninsular India. Int. J. Agri. Crop Sci., 8(3), 350–365.
  30. Kacar, B., İnal, A. (2008). Pant analysis. Nobel Bookstore, Ankara, Turkey.
  31. Keskin, N., Yagci, A., Kunter, B., Cangi, R., Sucu, S., Altinci, N.T. (2019). Mineral content of berries in native grape cultivars Grown in Mid–Black Sea Zone. JAFA, 36(3), 220–230. http://dx.doi.org/10.13002/jafag4596 DOI: https://doi.org/10.13002/jafag4596
  32. Khan, W.A., Shafiq, T., Ahmed, M. (2008). Physical and biochemical changes in commonly grown grape (vitis vivifera L.) in Pakistan at different maturity levels. Pak. J. Sci., 60(3), 94–99.
  33. Khawale, R.N., Singh, S.K. (2005). In vitro adventive embryony in citrus: A technique for citrus germplasm exchange. Curr. Sci., 88, 1309–1311.
  34. Leao, P.C.S., Cruz, C.D., Motoike, S.Y., (2011). Genetic diversity of table grape based on morphoagronomic traits. Sci. Agric., 68(1), 117–122. http://dx.doi.org/10.1590/S0103-90162011000100007 DOI: https://doi.org/10.1590/S0103-90162011000100007
  35. Liu, H.F., Wu, B.H., Fan, P.G., Li, S.H. (2006). Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. J. Sci. Food Agr., 86(10), 1526–1536. https://doi.org/10.1002/jsfa.2541 DOI: https://doi.org/10.1002/jsfa.2541
  36. Lorrain, B., Chira, K., Teissedre, P.L. (2011). Phenolic composition of Merlot and Cabernet-Sauvignon grapes from Bordeaux vineyard for the 2009-vintage: comparison to 2006, 2007 and 2008 vintages. Food Chem., 126, 1991–1999. DOI: https://doi.org/10.1016/j.foodchem.2010.12.062
  37. Ma, J., Betts, N.M. (2000). Zinc and copper intakes and their major food sources for older adults in the 1994–96 continuing survey of food intakes by individuals (CSF II). J. Nutr., 130, 2838–2843. https://doi.org/10.1093/jn/130.11.2838 DOI: https://doi.org/10.1093/jn/130.11.2838
  38. Martins, V., Cunha, A., Geros, H., Hanana, M., Blumwald, E. (2012). Mineral compounds in grape berry. In: Geros H., Chaves M., Delrot M., The biochemistry of the grape berry. Sharjah, Bentham Science, 23–43. DOI: https://doi.org/10.2174/978160805360511201010023
  39. Mattivi, F., Vrhovsek, U., Masuero, D., Trainotti, D. (2009). Differences in the amount and structure of extractable skin and seed tannins amongst red grape varieties. Austr. J. Grape Wine Res., 15, 27–35. http://dx.doi.org/10.1111/j.1755-0238.2008.00027.x DOI: https://doi.org/10.1111/j.1755-0238.2008.00027.x
  40. Miele, A., Rizzon, L.A., Queiroz, S.C.D.N.D., Gianello, C. (2015). Physicochemical composition, minerals, and pesticide residues in organic grape juices. Food. Sci and DOI: https://doi.org/10.1590/1678-457X.6540
  41. Technol., 35, 120–126. Mikulic-Petkovsek, M., Skvarc, A., Rusjan, D. (2019). Biochemical composition of different table grape cultivars produced in Slovenia. J. Hortic. Sci. Biotechnol., 94(3), 368–377. https://doi.org/10.1080/14620316.2018.1504629 DOI: https://doi.org/10.1080/14620316.2018.1504629
  42. Mota, R. V., Regina, M.A., Amorim, D.A., Favero, A.C. (2006). Fatores queafetam a maturaçao e a qualidade da uvapara vinificaçao [Physico-chemical composition of wine grapes berries in summer and winter growing seasons]. J. Inf. Agrop., 27, 56–64 [in Portuguese]. https://doi.org/10.1590/S0100-29452011005000001 DOI: https://doi.org/10.1590/S0100-29452011005000001
  43. Munoz-Robredo, P., Robledo, P., Manriquez, D., Molina, R., Defilipi, B. (2011). Characterization of sugars and organic acids in commercial varieties of table grapes. Chil. J. Agr. Res., 71, 453–458. http://dx.doi.org/10.4067/S0718-58392011000300017 DOI: https://doi.org/10.4067/S0718-58392011000300017
  44. Murray, R.K., Granner, D.K., Mayes, P.A., Rodwell, V.W. (2000). Harper’s biochemistry. McGraw–Hill, Health Profession Division, USA.
  45. Office International de la Vigne et du Vin. (2018). International Organisation of Vine and Wine: World Vitiniculture Situation. Statistical report on world Vitiniculture 2018.
  46. Onianwa, P.C., Adeyemo, A.O., Idowu, O.E., Ogabiela, E.E. (2001). Copper and zinc contents of Nigerian foods and estimates of the adult dietary intakes. Food Chem., 72, 89–95. https://doi.org/10.1016/S0308-8146(00)00214-4 DOI: https://doi.org/10.1016/S0308-8146(00)00214-4
  47. Rana, S., Bhushan, S. (2016). Apple phenolics as nutraceuticals: assessment, analysis and application. J. Food Sci. Technol., 53, 1727–1738. https://doi.org/10.1007/s13197-015-2093-8 DOI: https://doi.org/10.1007/s13197-015-2093-8
  48. Riaz, S., Lorenzis, G.D., Velasco, D., Koehmsted, A., Maghradze, D., Bobokashvili, Z., Musayev, M., Zdunic,
  49. G., Laucou, V., Walker, M.A., Failla, O., Preece, J.E., Aradhya, M., Garcia, R.A. (2018). Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biol., 18, 137. https://doi.org/10.1186/s12870-018-1351-0 DOI: https://doi.org/10.1186/s12870-018-1351-0
  50. Rizzon, L.A., Link, M. (2006). Composiçao do suco de uva caseiro de diferentes cultivares [Composition of homemade grape juice from different varieties]. Cienc. Rural, 36, 689–692 [in Portuguese]. https://doi.org/10.1590/S0103-84782006000200055 DOI: https://doi.org/10.1590/S0103-84782006000200055
  51. Rolle, L., Torchio, L., Giacosa, S., Rio Segade, S. (2015). Berry density and size as factors related to the physicochemical characteristics of Muscat Hamburg table grapes (Vitis vinifera L.). Food Chem., 173, 105–113. https://doi.org/10.1016/j.foodchem.2014.10.033 DOI: https://doi.org/10.1016/j.foodchem.2014.10.033
  52. Ruck, J.A. (1969). In chemical methods for analysis of fruits and vegetables: Summerland Research Station. Department of Agriculture, Canada, 27–30.
  53. Sabra, A., Netticadan, T., Wijekoon, C. (2021). Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chem., 12, 100149. https://doi.org/10.1016/j.fochx.2021.100149 DOI: https://doi.org/10.1016/j.fochx.2021.100149
  54. Sabry, G.H.M., Rizk–Alla, M.S., Mohamed, S.Y. (2009). Horticultural and molecular genetics characterization of some grape cultivars under desert and conditions. J. Biol. Chem. Environ. Sci., 4, 519–544.
  55. Sani, A.M. (2013). Determination of heavy metal content of grape juice concentrate. Indian J. Environ. Sci., 8, 103–105.
  56. Sensoy, R.I.G. (2015). Determination of organic acids, sugars, and macro-micro nutrient contents of must in some grape (Vitis vinifera L.) cultivars. J. Anim. Plant. Sci., 25, 693–697.
  57. Shiraishi, M., Fujishima, H., Chijiwa, H. (2010). Evaluation of table grapes genetic resources for sugar, organic acid, and amino acid composition of berries. Euphytica, 174, 1–13. http://dx.doi.org/10.1007/s10681-009-0084-4 DOI: https://doi.org/10.1007/s10681-009-0084-4
  58. Siahnouri, Z., Sadeghian, M., Salehisormghi, M., Qomi. M. (2013). Determination of Iranian walnut and pistachio mineral contents. J. Basic. Appl. Sci. Res., 3, 217–220.
  59. Soetan, K.O., Olaiya, C.O., Oyewole, O.E. (2010). The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci., 4, 200–222.
  60. Soltekin, O., Teker, T., Erdem, A., Kacar, E., Altindis, A. (2015). Response of ‘Red Globe’ (Vitis vinifera L.) to cane girdling. BIO Web of Conferences, 5, 1–4. http://dx.doi.org/10.1051/bioconf/20150501019 DOI: https://doi.org/10.1051/bioconf/20150501019
  61. Teixeira, A., Dias, J.E., Castellarin, S.D., Geros, H. (2013). Berry phenolics of grapevine under challenging environments. Int. J. Mol. Sci., 14, 18711–18739. https://doi.org/10.3390/ijms140918711 DOI: https://doi.org/10.3390/ijms140918711
  62. Uddin, M., Shah, M., Rahman, K.U., Alam, R., Rauf, M.A. (2011). Evaluation of local and exotic grapes germplasm at Mingora, Swat. Sarhad J. Agric., 27(4), 553–556.
  63. Unal, Y., Kesgin, M., Inan, M.S., Soylemezoglu, G. (2014). Comparison of amelographic characteristics of some important grapes varieties are grown in the Aegean region, rootstock and clones. Turk. J. Agric. Natural Sci., 2, 1546–1553.
  64. Wahab, M.A. (2011). Description and evaluation of some grape cultivars under Egyptian conditions. J. Amer. Sci., 7, 10– 22.
  65. Weyh, C., Krüger, K., Peeling, P., Castell, L. (2022). The role of minerals in the optimal functioning of the immune system. Nutrients, 14(3), 644. https://doi.org/10.3390/nu14030644 DOI: https://doi.org/10.3390/nu14030644
  66. Yinshan, G., Zaozhu, N., Kai, S., Jia, Z., Zhihua, R., Yuhui, Z., Quan, G., Hongyan, G., Xiuwu, G. (2017). Composition and content analysis of sugars and organic acids for 45 grape cultivars from northeast region of China. Pak. J. Bot., 49(1), 155–160.
  67. Zoecklein, B.W. (2001). Grape sampling and maturity evaluation for growers. Vintner’s Corner, 16, 1–6.

Downloads

Download data is not yet available.

Podobne artykuły

<< < 40 41 42 43 44 45 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.