Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 22 Nr 4 (2023)

Artykuły

Effect of high-energy ionizing radiation on the DNA content and genetic variation in chrysanthemum plants regenerated from irradiated ovaries

DOI: https://doi.org/10.24326/asphc.2023.4912
Przesłane: 9 września 2022
Opublikowane: 2023-08-31

Abstrakt

This study aimed to evaluate the range of quantitative and qualitative genetic changes in chrysanthemum plants regenerated in vitro from ovaries irradiated with high-energy photons (5, 10, and 15 Gy) and high-energy electrons (10 Gy). The highest DNA loss (up to 11%) was observed in plants originating from ovaries treated with 10 Gy high energy. AMOVA revealed significant differences between populations of plants representing different mutagenic treatments (18% for RAPD-based and 22% for SCoT-based analysis). The incidence of genetic changes was strongly correlated with the applied type and dose of ionizing radiation. The highest genetic distances to reference plants were observed for plants regenerated from 15 Gy high-energy photon (5.8% with RAPD and 1.7% with SCoT) and 10 Gy high-energy electron-treated explants (6.0% with RAPD and 2.9% with SCoT). Considerable changes in the phenotype of mutants were not necessarily correlated with the extent of genetic alterations. Qualitative and quantitative methods of evaluating post-radiation genetic changes should be combined for reliable detection of variant plants at early developmental stages.

Bibliografia

  1. Anderson, N.O. (2007). Chrysanthemum. In: Flower breeding and genetics, Anderson, N.O., (ed.). Springer, Dordrecht, 389–437. https://doi.org/10.1007/978-1-4020-4428-1_14 DOI: https://doi.org/10.1007/978-1-4020-4428-1_14
  2. Bhattacharyya, P., Kumaria, S., Kumar, S., Tandon, P. (2013) Start Codon Targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species. Gene, 529(1), 21–26. https://doi.org/10.1016/j.gene.2013.07.096 DOI: https://doi.org/10.1016/j.gene.2013.07.096
  3. Collard, B.C.Y., Mackill, D.J. (2009). Start Codon Targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep., 27, 86. https://doi.org/10.1007/s11105-008-0060-5 DOI: https://doi.org/10.1007/s11105-008-0060-5
  4. CPVO (2022). Community Plant Variety Office – online database for registered cultivars. https://cpvo.europa.eu/en/applications-and-examinations/cpvo-variety-finder [access: 10.07.2022].
  5. Cuttler, J.M., Pollycove, M. (2009). Nuclear energy and health: and the benefits of low-dose radiation hormesis. Dose Resp., 7(1), 52–89. https://doi.org/10.2203/dose-response.08-024.Cuttler DOI: https://doi.org/10.2203/dose-response.08-024.Cuttler
  6. Datta, S.K. (2014). Induced mutagenesis: basic knowledge for technological success. In: Mutagenesis: exploring genetic diversity of crops, Tomlekova, N.B., Kozgar, M.I., Wani, M.R. (eds). Wageningen Academic Publishers, 95–137. https://doi.org/10.3920/978-90-8686-796-7 DOI: https://doi.org/10.3920/978-90-8686-796-7
  7. Datta, S.K. (2020). Induced mutations: technological advancement for development of new ornamental varieties. Nucleus, 63, 119–129. https://doi.org/10.1007/s13237-020-00310-7 DOI: https://doi.org/10.1007/s13237-020-00310-7
  8. Dolezel, J., Bartos, J. (2005). Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot., 95(1), 99–110. https://doi.org/10.1093/aob/mci005 DOI: https://doi.org/10.1093/aob/mci005
  9. Dolezel, J., Sgorbati, S., Lucretti, S. (1992). Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant., 85, 625–631. https://doi.org/10.1111/j.1399-3054.1992.tb04764.x DOI: https://doi.org/10.1034/j.1399-3054.1992.850410.x
  10. Eeckhaut. T., Van Houtven. W., Bruznican. S., Leus L., Van Huylenbroeck, J. (2020). Somaclonal variation in Chrysanthemum × morifolium protoplast regenerants. Front. Plant Sci., 11, 2104. https://doi.org/10.3389/fpls.2020.607171 DOI: https://doi.org/10.3389/fpls.2020.607171
  11. Feng, S.G., He, R.F., Jiang, M.Y., Lu, J.J., Shen, X.X., Liu, J.J., Wang, Z.A., Wang, H.Z. (2016). Genetic diversity and rela-tionships of medicinal Chrysanthemum morifolium revealed by start codon targeted (SCoT) markers. Sci. Hortic., 201, 118–123. https://doi.org/10.1016/j.scienta.2016.01.042 DOI: https://doi.org/10.1016/j.scienta.2016.01.042
  12. Galbraith, D.W., Harkins, K.R., Maddox, J.M., Ayres, N.M., Sharma, D.P., Firoozabady, E. (1983). Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science, 220, 1049–1051. https://doi.org/10.1126/science.220.4601.1049 DOI: https://doi.org/10.1126/science.220.4601.1049
  13. Gerbi, B.J. (2006). Clinical applications of high-energy electrons. In: Technical basis of radiation therapy. Medical radiology (radiation oncology), Levitt, S.H., Purdy, J.A. (eds.). Springer: Berlin, Heidelberg, 135–164. https://doi.org/10.1007/3-540-35665-7_7 DOI: https://doi.org/10.1007/3-540-35665-7_7
  14. Gudkov, S.V., Grinberg, M.A., Sukhov V., Vodeneev, V. (2019). Effect of ionizing radiation on physiological and molecular pro-cesses in plants. J. Environ. Radioact., 202, 8–24. https://doi.org/10.1016/j.jenvrad.2019.02.001 DOI: https://doi.org/10.1016/j.jenvrad.2019.02.001
  15. van Harten, A.M. (1998). Mutation breeding: theory and practical applications. Cambridge University Press, United Kingdom, 2–3, 123–124.
  16. Holme, I.B., Gregersen, P.L., Brinch-Pedersen, H. (2019). Induced genetic variation in crop plants by random or targeted mutagenesis: convergence and differences. Front Plant Sci., 10, 1468. https://doi.org/10.3389/fpls.2019.01468 DOI: https://doi.org/10.3389/fpls.2019.01468
  17. IAEA (2022). International Atomic Energy Agency – online mutant variety database. www.mvd.iaea.org [access: 10.07.2022].
  18. Ibrahim, R., Ahmad, Z., Salleh, S., Hassan, A.A., Ariffin, S. (2018). Mutation breeding in ornamentals. In: Ornamental crops. Handbook of plant breeding, Van Huylenbroeck, J. (ed.). Springer: Dordrecht, The Netherlands, 175–211. DOI: https://doi.org/10.1007/978-3-319-90698-0_8
  19. Jamali, S.H., Cockram, J., Hickey, L.T. (2019). Insights into deployment of DNA markers in plant variety protection and registration. Theor. App. Genet., 132, 1911–1929. https://doi.org/10.1007/s00122-019-03348-7 DOI: https://doi.org/10.1007/s00122-019-03348-7
  20. Jędrzejczyk, I., Śliwińska, E. (2010). Leaves and seeds as materials for flowcytometric estimation of the genome size of 11 Rosaceae woody species containing DNA-staining inhibitors. J. Bot., 10, 930895. https://doi.org/10.1155/2010/930895 DOI: https://doi.org/10.1155/2010/930895
  21. Jo, Y.D., Kim, J.-B. (2019). Frequency and spectrum of radiation-induced mutations revealed by whole-genome sequencing analyses of plants. Quantum Beam. Sci., 3, 7. https://doi.org/10.3390/qubs3020007 DOI: https://doi.org/10.3390/qubs3020007
  22. Kang, E., Lee, Y., Sung, S., Ha, B., Kim, S., Kim, D., Kim, J., Kang, S. (2013). Analysis of the genetic relationship of gamma-irradiated in vitro mutants derived from standard-type chrysanthemum cv. Migok. Hortic. Env. Biotech., 54, 76–81. https://doi.org/10.1007/s13580-013-0124-9 DOI: https://doi.org/10.1007/s13580-013-0124-9
  23. Karp, A. (1995). Somaclonal variation as a tool for crop improvement. Euphytica, 85, 295–302. DOI: https://doi.org/10.1007/BF00023959
  24. Kaul, A., Kumar, S., Ghani, M. (2011). In vitro mutagenesis and detection of variability among radiomutants of chrysanthemum using RAPD. Adv. Hortic. Sci., 25, 106–111.
  25. Kim, J.H., Ryu, T.H., Lee, S.S., Lee, S., Chung, B.Y. (2019). Ionizing radiation manifesting DNA damage response in plants: An overview of DNA damage signaling and repair mechanisms in plants. Plant Sci., 278, 44–53. https://doi.org/10.1016/j.plantsci.2018.10.013 DOI: https://doi.org/10.1016/j.plantsci.2018.10.013
  26. Kokurewicz, K., Brunetti, E., Welsh, G.H., Wiggins, S.M., Boyd, M., Sorensen, A., Chalmers, A.J., Schettino, G., Subiel, A., DesRosiers, C., Jaroszyński, D.A. (2019). Focused very high-energy electron beams as a novel radiotherapy modality for producing high-dose volumetric elements. Sci. Rep., 9, 10837 https://doi.org/10.1038/s41598-019-46630-w DOI: https://doi.org/10.1038/s41598-019-46630-w
  27. Kulus, D., Tymoszuk, A., Jędrzejczyk, I., Winiecki J. (2022). Gold nanoparticles and electromagnetic irradiation in tissue culture systems of bleeding heart: biochemical, physiological, and (cyto)genetic effects. Plant Cell Tiss. Organ Cult., 149, 715–734. https://doi.org/10.1007/s11240-022-02236-1 DOI: https://doi.org/10.1007/s11240-022-02236-1
  28. Ludovici, G.M., Oliveira de Souza, S, Chierici, A, Cascone, M.G., d’Errico, F, Malizia, A. (2020). Adaptation to ionizing radiation of higher plants: From environmental radioactivity to chernobyl disaster. J. Environ. Radioact., 222, 106375. https://doi.org/10.1016/j.jenvrad.2020.106375 DOI: https://doi.org/10.1016/j.jenvrad.2020.106375
  29. Miler, N., Jędrzejczyk, I. (2018). Chrysanthemum plants regenerated from ovaries: a study on genetic and phenotypic variation. Turk. J. Bot., 42, 289–297. DOI: https://doi.org/10.3906/bot-1707-19
  30. Miler, N., Kulus, D. (2018). Microwave treatment can induce chrysanthemum phenotypic and genetic changes. Sci. Hortic., 227, 223–233. https://doi.org/10.1016/j.scienta.2017.09.047 DOI: https://doi.org/10.1016/j.scienta.2017.09.047
  31. Miler, N., Kulus, D., Śliwinska, E. (2020). Nuclear DNA content as an indicator of inflorescence colour stability of in vitro propagated solid and chimera mutants of chrysanthemum. Plant Cell Tiss. Organ Cult., 143, 421–430. https://doi.org/10.1007/s11240-020-01929-9 DOI: https://doi.org/10.1007/s11240-020-01929-9
  32. Miler, N., Muszczyk, P. (2015). Regeneration of callus and shoots from the ovules and ovaries of chrysanthemum in vitro. Acta Hortic., 1083, 103–106. https://doi.org/10.17660/ActaHortic.2015.1083.10 DOI: https://doi.org/10.17660/ActaHortic.2015.1083.10
  33. Miler, N., Jedrzejczyk, I., Jakubowski, S., Winiecki, J. (2021). Ovaries of chrysanthemum irradiated with high-energy photons and high-energy electrons can regenerate plants with novel traits. Agronomy, 11, 1111. https://doi.org/10.3390/agronomy11061111 DOI: https://doi.org/10.3390/agronomy11061111
  34. Miler, N., Zalewska, M. (2014). Somaclonal variation of chrysanthemum propagated in vitro from different explant types. Acta Sci. Pol. Hort. Cult., 13(2), 69–82.
  35. Nasri, F., Zakizadeh, H., Vafaee, Y., Mozafari, A.A. (2022). In vitro mutagenesis of Chrysanthemum morifolium cultivars using ethyl-methanesulphonate (EMS) and mutation assessment by ISSR and IRAP markers. Plant Cell Tiss. Organ Cult., 149, 657–673. https://doi.org/10.1007/s11240-021-02163-7 DOI: https://doi.org/10.1007/s11240-021-02163-7
  36. Nybom, H., Weising, K., Rotter, B. (2014). DNA fingerprinting in botany: past, present, future. Investig. Genet., 5, 1. https://doi.org/10.1186/2041-2223-5-1 DOI: https://doi.org/10.1186/2041-2223-5-1
  37. Parsons, B.J. (2013). Sterilisation procedures for tissue allografts. In: Standardisation in cell and tissue engineering, woodhead publishing series in biomaterials, Salih, V. (ed). Woodhead Publishing, 197–211. https://doi.org/10.1533/9780857098726.2.197 DOI: https://doi.org/10.1533/9780857098726.2.197
  38. Peakall, R., Smouse P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformat., 28, 2537–2539. DOI: https://doi.org/10.1093/bioinformatics/bts460
  39. Peakall, R., Smouse P.E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes, 6, 288–295. DOI: https://doi.org/10.1111/j.1471-8286.2005.01155.x
  40. Reisz, J.F., Bansal, N., Qian, J., Zhao, W., Furdui, C.M. (2014). Effects of ionizing radiation on biological molecules – mechanisms of damage and emerging methods of detection. Antioxid Redox Signal., 21, 260–292. DOI: https://doi.org/10.1089/ars.2013.5489
  41. Saboori, S., Noormohammadi, Z., Sheidai, M., Marashi, S.S. (2020). SCoT molecular markers and genetic fingerprinting of date palm (Phoenix dactylifera L.) cultvars. Genet. Resour. Crop Evol., 67, 73–82. https://doi.org/10.1007/s10722-019-00854-x DOI: https://doi.org/10.1007/s10722-019-00854-x
  42. Shelake, R.M., Pramanik, D., Kim, JY. (2019). Evolution of plant mutagenesis tools: a shifting paradigm from random to targeted genome editing. Plant Biotechnol. Rep., 13, 423–445. https://doi.org/10.1007/s11816-019-00562-z DOI: https://doi.org/10.1007/s11816-019-00562-z
  43. Shigematsu, N., Fukada, J., Ohashi, T., Kawaguchi, O., Kawata, T. (2012). Nuclear disaster after the earthquake and tsunami of March 11. Keio J. Med., 61, 28–34. https://doi.org/10.2302/kjm.61.28 DOI: https://doi.org/10.2302/kjm.61.28
  44. Slater, J.M. (2012). From X-Rays to ion beams: A short history of radiation therapy. In: Ion beam therapy. Biological and medical physics, biomedical engineering, Linz, U. (ed.). Springer, Berlin, Heidelberg, 320. https://doi.org/10.1007/978-3-642-21414-1_1 DOI: https://doi.org/10.1007/978-3-642-21414-1_1
  45. Spaargaren, J., Van Geest, G. (2018). Chrysanthemum. In: Ornamental crops. Handbook of plant breeding, Van Huylenbroeck, J. (ed.). Springer, vol. 11, 319–348. DOI: https://doi.org/10.1007/978-3-319-90698-0_14
  46. Teixeira da Silva, J.A., Kulus, D. (2014). Chrysanthemum biotechnology: discoveries from the recent literature. Folia Hortic., 26(2), 67–77. DOI: https://doi.org/10.2478/fhort-2014-0007
  47. Turner, J.E. (2004). Interaction of ionizing radiation with matter. Health Phys., 86, 228–252. DOI: https://doi.org/10.1097/00004032-200403000-00002
  48. Tymoszuk, A., Kulus, D. (2022). Effect of silver nanoparticles on the in vitro regeneration, biochemical, genetic, and phenotype variation in adventitious shoots produced from leaf explants in chrysanthemum. Int. J. Mol. Sci., 23, 7406. https://doi.org/10.3390/ijms23137406 DOI: https://doi.org/10.3390/ijms23137406
  49. Ulukapi, K., Ozmen, S.F. (2018). Study of the effect of irradiation (60Co) on M1 plants of common bean (Phaseolus vulgaris L.) cultivars and determined of proper doses for mutation breeding. J. Rad. Res. App. Sci. 11, 157–161. DOI: https://doi.org/10.1016/j.jrras.2017.12.004
  50. Welsh, J., McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res., 18, 7213–7218. DOI: https://doi.org/10.1093/nar/18.24.7213
  51. Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18, 6531–6535. DOI: https://doi.org/10.1093/nar/18.22.6531
  52. Winiecki, J. (2020). Principles of radiation therapy. Physical Sci. Rev., 20190063. https://doi.org/10.1515/psr-2019-0063 DOI: https://doi.org/10.1515/psr-2019-0063
  53. Yamaguchi, H., Shimizu, A., Degi K., Morishita, T. (2008). Effects of dose and dose rate of gamma ray irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breed. Sci., 58, 331–335. https://doi.org/10.1270/jsbbs.58.331 DOI: https://doi.org/10.1270/jsbbs.58.331
  54. Yamaguchi, H., Shimizu, A., Hase, Y., Tanaka, A., Shikazono, N., Degi, K., Morishita, T. (2010). Effects of ion beam irradiation on mutation induction and nuclear DNA content in chrysanthemum. Bree. Sci., 60, 398–404. https://doi.org/10.1270/jsbbs.60.398 DOI: https://doi.org/10.1270/jsbbs.60.398

Downloads

Download data is not yet available.

Podobne artykuły

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.