Abstrakt
Scorzonera (Scorzonera hispanica L.) is a particularly valuable species among little-known and rarely cultivated vegetables. It is a root vegetable of high dietary and nutritional values. The suitable microbiological activity of the soil favors the growth and development of scorzonera. Biostimulants can positively affect the communities of rhizospheric microorganisms of cultivated plants, including this important vegetable. The studies established the influence of biostimulants on the microbial communities in the scorzonera rhizosphere. Before setting up the field experiment, scorzonera seeds were dressed with fungicide Zaprawa Nasienna T 75 DS/WS or biostimulants Beta-Chikol, Bio-Algeen S-90, and Asahi SL. The laboratory microbiological analyses of scorzonera rhizosphere soil were conducted and determined the total population of bacteria and fungi. The obtained rhizosphere isolates of fungi Albifimbria, Clonostachys, Epicoccum, Penicillium, and Trichoderma sp. were tested to check the influence on fungi pathogenic to scorzonera (Fusarium culmorum, Fusarium oxysporum, Sclerotinia sclerotiorum, and Rhizoctonia solani). The experiments showed that biostimulants, especially Asahi SL and Beta-Chikol, favored the development of rhizobacteria populations (including Bacillus sp. and Pseudomonas sp.). All biostimulants (Beta-Chikol, in particular) and the fungicide decreased the population of rhizospheric fungi and limited the occurrence of polyphagous fungi in the rhizosphere of scorzonera. Biostimulant Beta-Chikol and fungicide Zaprawa Nasienna T 75 DS/WS were most effective in stimulating the development of antagonistic fungi. Clonostachys rosea, Trichoderma sp., and Albifimbria verrucaria predominated as antagonistic rhizospheric fungi.
Bibliografia
- Abbo, A.S., Idris, M.O., Hammad, A.M. (2014). The antifungal effects of four tomato rhizosphere Bacillus spp. against Alternaria alternata. Inter. J. Sci. Res., 3(7), 1324–1328.
- Balasubramanian, V., Vashisht, D., Cletus, J., Sakthivel, N. (2012). Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett., 34, 1983–1990. https://doi.org/10.1007/s10529-012-1012-6
DOI: https://doi.org/10.1007/s10529-012-1012-6
- Brito, J.P.C., Ramada, M.H.S., de Magalhães, M.T.Q., Silva, L.P., Ulhoa, C.J. (2014). Peptaibols from Trichoderma asperellum TR356 strain isolated from Brazilian soil. SpringerPlus, 3, 1–10. https://doi.org/10.1186/2193-1801-3-600
DOI: https://doi.org/10.1186/2193-1801-3-600
- Chandrasekaran, M., Belachew, S.T., Yoon, E., Chun, S.C. (2017). Expression of β-1,3-glucanase (GLU) and phenylalanine ammonia-lyase (PAL) genes and their enzymes in tomato plants induced after treatment with Bacillus subtilis CBR05 against Xanthomonas campestris pv. vesicatoria. J. Gen. Plant Pathol., 83, 7–13. https://doi.org/10.1007/s10327-016-0692-5
DOI: https://doi.org/10.1007/s10327-016-0692-5
- Colla, G., Rouphael, Y., Di Mattia, E., El-Nakhel, C., Cardarelli, M. (2015). Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. J. Sci. Food Agric., 95(8), 1706–1715. https://doi.org/10.1002/jsfa.6875
DOI: https://doi.org/10.1002/jsfa.6875
- de La Cruz, J., Hidalgo-Gallego, A., Lora, J.M., Benitez, T., Pintor-Toro, J.A., Llobell, A. (1992). Isolation and characterization of three chitinases from Trichoderma harzianum. Eur. J. Biochem., 206(3), 859–867. https://doi.org/10.1111/j.1432-1033.1992.tb16994.x
DOI: https://doi.org/10.1111/j.1432-1033.1992.tb16994.x
- Dolota, A., Dąbrowska, B. (2004). Raw fibre and inulin content in roots of different scorzonera cultivars (Scorzonera hispanica L.) depending on cultivation method. Folia Hortic., 16(1), 31–37.
- Drobek, M., Frąc, M., Cybulska, J. (2019). Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress – a review. Agronomy, 9(6), 335. https://doi.org/10.3390/agronomy9060335
DOI: https://doi.org/10.3390/agronomy9060335
- du Jardin, P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Sci. Horticult., 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
DOI: https://doi.org/10.1016/j.scienta.2015.09.021
- El Hadrami, A., Adam, A.R., El Hadrami, I., Daayf, F. (2010). Chitosan in plant protection. Mar. Drugs, 8(4), 968–987. https://doi.org/10.3390/md8040968
DOI: https://doi.org/10.3390/md8040968
- Gaiero, J.R., McCall, C.A., Thompson, K.A., Day, N.J., Best, A.S., Dunfield, K.E. (2013). Inside the root microbiome: bacterial root endophytes and plant growth promotion. Americ. J. Bot., 100(9), 1738–1750. https://doi.org/10.3732/ajb.1200572
DOI: https://doi.org/10.3732/ajb.1200572
- Głosek-Sobieraj, M., Cwalina-Ambroziak, B., Waśkiewicz, A., Hamouz, K., Perczak, A. (2019). The effect of biostimulants on the health status and content of chlorogenic acids in potato tubers (Solanum tuberosum L.) with colored flesh. Gesunde Pflan., 71, 45–60. https://doi.org/10.1007/s10343-018-00441-7
DOI: https://doi.org/10.1007/s10343-018-00441-7
- Grant, M.R., Jones, J.D.G. (2009). Perspective hormone (Dis) harmony moulds plant health and disease. Science, 324(5928), 750–752. https://doi.org/10.1126/science.1173771
DOI: https://doi.org/10.1126/science.1173771
- Gveroska, B., Ziberoski, J. (2012). Trichoderma harzianum as a biocontrol agent against Alternaria alternata on tobacco. Appl. Tech. Innov., 7, 67–76. https://doi.org/10.15208/ati.2012.9
DOI: https://doi.org/10.15208/ati.2012.9
- Horoszkiewicz-Janka, J., Jajor, E. (2006). Wpływ zaprawiania nasion na zdrowotność jęczmienia, pszenicy i rzepaku we wczesnych fazach rozwojowych [The effect of seed dressing on healthiness of barley, wheat and rape in early development stages]. J. Res. Appl. Agric. Eng., 51(2), 47–53. In Polish.
- Horoszkiewicz-Janka, J., Michalski, T. (2006). Wpływ zabiegów ochronnych na pulchność ziarna, zdolność kiełkowania i skład specyficzny grzybów wyizolowanych z ziarna jęczmienia i owsa. [The effect of protective treatments on plumpness of grain, germinating capacity and specific composition of fungi isolated from grain of barley and oat]. Prog. Plant Prot., 46(1), 417–423. [In Polish].
- Jamiołkowska, A. (2020). Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. Agronomy, 10, 173, https://doi.org/10.3390/agronomy10020173
DOI: https://doi.org/10.3390/agronomy10020173
- Jaulneau, V., Lafitte. C., Corio-Costet, M.F., Stadnik, M.J., Salamagne, S., Briand, X., Esquerré-Tugayé, M.T., Dumas, B. (2011). An Ulva armoricana extract protects plants against three powdery mildew pathogens. Eur. J. Plant Pathol., 131, 393–401. https://doi.org/10.1007/s10658-011-9816-0
DOI: https://doi.org/10.1007/s10658-011-9816-0
- Kaur, N., Gupta, A.K. (2002). Applications of inulin and oligofructose in health and nutrition. J. Biosci., 27, 703–714. https://doi.org/10.1007/BF02708379
DOI: https://doi.org/10.1007/BF02708379
- Konopiński, M. (2003). Wpływ zróżnicowanych systemów uprawy na kształtowanie warunków wzrostu, plonowanie i wartość biologiczną skorzonery (Scorzonera hispanica L.) [Effect of differentiated cultivation systems on the formation of growth conditions, yield and biological value of scorzonera (Scorzonera hispanica L.)]. Rozpr. Nauk. AR Lublin, 271, 93. In Polish.
- Leslie, J.F., Summerell, B.A. (2006). The Fusarium laboratory manual. Blackwell Publishing Professional, Ames, Iowa, USA.
DOI: https://doi.org/10.1002/9780470278376
- Ma, G.Z., Gao, H.N., Zhang, Y.H., Li, S.D., Xie, S.D., Wu, S.J. (2012). Purification and characterization of chitinase from Gliocladium catenulatum strain HL-1-1. Afr. J. Microbiol. Res., 6, 4377–4383. https://doi.org/10.5897/AJMR12.605
DOI: https://doi.org/10.5897/AJMR12.605
- Malik, A., Mor, V.S., Tokas, J., Punia, H., Malik, S., Malik, K., Sangwan, S., Tomar, S., Singh, P., Singh, N., Himangini, Vikram, Nidhi, Singh, G., Vikram, Kumar, V. Sandhya, Karwasra, A. (2021). Biostimulant-treated seedlings under sustainable agriculture: a global perspective facing climate change. Agronomy, 11(1), 14. https://doi.org/10.3390/agronomy11010014
DOI: https://doi.org/10.3390/agronomy11010014
- Mańka, K. Mańka, M. (1992). A new method for evaluating interaction between soil inhibiting fungi and plant pathogen. Bull. OILB/SROP, XV, 73–77.
- Mańka, K., Kowalski, S. (1968). The effect of communities of soil-borne fungi from two forest nurseries (pine and ash) on the development of necrotic fungus Fusarium oxysporum Schl.). Poznań Soc. Friends Sci., 25, 197–205.
- Masi, M., Nocera, P., Reveglia, P., Cimmino, A., Evidente, A. (2018). Fungal metabolites antagonists towards plant pests and human pathogens: structure-activity relationship studies. Molecules, 23(4), 834. https://doi.org/10.3390/molecules23040834
DOI: https://doi.org/10.3390/molecules23040834
- Mukherjee, P.K., Horwitz, B.A., Herrera-Estrella, A., Schmoll, M., Kenerley, C.M. (2013). Trichoderma research in the genome era. Annu. Rev. Phytopathol., 51, 105–129. https://doi.org/10.1146/annurev-phyto-082712-102353
DOI: https://doi.org/10.1146/annurev-phyto-082712-102353
- Patkowska, E. (2020). Soil-borne microorganisms threatening carrot cultivated with the use of cover crops. Acta Sci. Pol. Hortorum Cultus, 19(4), 71–86. https://doi.org/10.24326/asphc.2020.4.7
DOI: https://doi.org/10.24326/asphc.2020.4.7
- Patkowska, E. (2021). Biostimulants managed fungal phytopathogens and enhanced activity of beneficial microorganisms in rhizosphere of scorzonera (Scorzonera hispanica L.). Agriculture, 11(4), 347. https://doi.org/10.3390/agriculture11040347
DOI: https://doi.org/10.3390/agriculture11040347
- Patkowska, E., Jamiołkowska, A., Mielniczuk, E., Skwaryło-Bednarz, B. (2022). Biodiversity of fungi colonizing scorzonera (Scorzonera hispanica L.) cultivated with the use of biostimulants. Acta Sci. Pol. Hortorum Cultus, 21(3), 99–111. https://doi.org/10.24326/asphc.2022.3.9
DOI: https://doi.org/10.24326/asphc.2022.3.9
- Patkowska, E., Mielniczuk, E., Jamiołkowska, A., Skwaryło-Bednarz, B., Błażewicz-Woźniak, M. (2020). The influence of Trichoderma harzianum Rifai T-22 and other biostimulants on rhizosphere beneficial microorganisms of carrot. Agronomy, 10(11), 1637. https://doi.org/10.3390/agronomy10111637
DOI: https://doi.org/10.3390/agronomy10111637
- Paulert, R., Ebbinghaus, D., Urlass, C., Moerschbacher, M. (2010). Priming of the oxidative burst in rice and wheat cell cultures by ulvan, a polysaccharide from green macroalgae, and enhanced resistance against powdery mildew in wheat and barley plants. Plant Pathol., 59(4), 634–642. https://doi.org/10.1111/j.1365-3059.2010.02300.x
DOI: https://doi.org/10.1111/j.1365-3059.2010.02300.x
- Paulert, R., Talamini, V., Cassolato, J.E.F., Duarte, M.E.R., Noseda, M.D., Smania, A., Stadnik, M.J. (2009). Effects of sulphated polysaccharide and alcoholic extracts from green seaweeds Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.). J. Plant Dis. Prot., 116, 263–270. https://doi.org/10.1007/BF03356321
DOI: https://doi.org/10.1007/BF03356321
- Ramirez, C. (1982). Manual and atlas of the Penicillia. Elsevier Biomedical Press, Amsterdam–New York–Oxford. Roberfroid, M.B. (2002). Functional foods: concepts and application to inulin and oligofructose. British J. Nutr., 87, S139–S143. https://doi.org/10.1079/bjnbjn/2002529
DOI: https://doi.org/10.1079/BJN/2002529
- Roberti, R., Bergonzoni, F., Finestrelli, A., Leonardi, P. (2015). Biocontrol of Rhizoctonia solani disease and biostimulant effect by microbial products on bean plants. Micologia Italiana, 44, 49–61. https://doi.org/10.6092/issn.2465-311X/5742
- Selitrennikoff, C.P. (2001). Antifungal proteins. Appl. Environ. Microbiol., 67(7), 2883–2894.
DOI: https://doi.org/10.1128/AEM.67.7.2883-2894.2001
- Shahrajabian, M.H., Chaski, C., Polyzos, N., Petropoulos, S.A. (2021). Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules, 11(5), 698. https://doi.org/10.3390/biom11050698
DOI: https://doi.org/10.3390/biom11050698
- Smolińska, U., Kowalska, B. (2018). Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum – a review. J. Plant Pathol., 100, 1–12. https://doi.org/10.1007/s42161-018-0023-0
DOI: https://doi.org/10.1007/s42161-018-0023-0
- Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M.S., Ramakrishnan, M., Landi, M., Araniti, F., Sharma, A. (2020). Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants, 9(6), 762. https://doi.org/10.3390/plants9060762
DOI: https://doi.org/10.3390/plants9060762
- Sosnowski, J., Truba, M., Redzik, P., Toczyska, E. (2020). The effect of growth regulator Tytanit dose on Medicago × varia T. Martin and Trifolium pratense L. yield and nutritional value. Saudi J. Biol. Sci. 27(11), 2890–2901. https://doi.org/10.1016/j.sjbs.2020.09.013
DOI: https://doi.org/10.1016/j.sjbs.2020.09.013
- Walters, D., Newton, A., Lyon, G. (2007). Induced resistance for plant defense: a sustainable approach to crop protection. Blackwell Publishing, Oxford, UK, pp. 258.
DOI: https://doi.org/10.1002/9780470995983
- Xing, K., Zhu, X., Peng, X., Qin, S. (2015). Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron. Sustain. Dev., 35, 569–588. https://doi.org/10.1007/s13593-014-0252-3
DOI: https://doi.org/10.1007/s13593-014-0252-3
- Zarzycki K., Szeląg Z. (2006). Red list of vascular plants in Poland. In: Z. Mirek, K. Zarzycki, W. Wojewoda, Z. Szeląg, W. Szafer (eds), Red list of plants and fungi in Poland. Institute of Botany, Polish Academy of Science, Kraków, 9–20.
- Zhao, D., Zhao, H., Zhao, D., Zhu, X., Wang, Y., Duan, Y., Xuan, Y., Chen, L. (2018). Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biol. Control, 119, 12–19. https://doi.org/10.1016/j.biocontrol.2018.01.004
DOI: https://doi.org/10.1016/j.biocontrol.2018.01.004
Downloads
Download data is not yet available.
-
Zbigniew Jarosz,
Katarzyna Dzida,
Renata Nurzyńska-Wierdak,
POSSIBILITY OF REUSING EXPANDED CLAY IN GREENHOUSE TOMATO CULTIVATION. PART I. YIELD AND CHEMICAL COMPOSITION OF FRUITS
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 11 Nr 6 (2012)
-
Jianwu Ren,
Wenjing Chen,
Mikołaj Knaflewski,
FACTORS AFFECTING ASPARAGUS (Asparagus officinalis L.) ROOT DEVELOPMENT IN VITRO
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 11 Nr 6 (2012)
-
Agnieszka Cabała,
Katarzyna Wróblewska,
Piotr Chohura,
Regina Dębicz,
EFFECT OF FERTILIZATION THROUGH GEOCOMPOSITE ON NUTRITIONAL STATUS OF Hosta ‘HALCYON’ PLANTS GROWN IN CONTAINERS
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 15 Nr 3 (2016)
-
Ewelina Jacygrad,
Agnieszka Ilczuk,
Monika Mikos,
Katarzyna Jagiełło-Kubiec,
EFFECT OF MEDIUM TYPE AND PLANT GROWTH REGULATORS ON THE in vitro SHOOT PROLIFERATION OF Cotinus coggygria Scop. ‘ROYAL PURPLE’
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 11 Nr 5 (2012)
-
Dorota Wrońska-Pilarek,
Heidemarie Halbritter,
Agnieszka Krzymińska,
Leszek Bednorz,
Jan Bocianowski,
POLLEN MORPHOLOGY OF SELECTED EUROPEAN SPECIES OF THE GENUS Allium L. (ALLIACEAE)
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 15 Nr 4 (2016)
-
Agnieszka Hanaka,
Sławomir Dresler,
Renata Nurzyńska-Wierdak,
BIOCHEMICAL AND PHYSIOLOGICAL RESPONSES OF Eruca sativa MILL. TO SELECTED NUTRIENT CONDITIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 15 Nr 4 (2016)
-
Katarzyna Seidler-Łozykowska,
Bogdan Kędzia,
Jan Bocianowski,
Agnieszka Gryszczyńska,
Zdzisław Łowicki,
Bogna Opala,
Aurelia Pietrowiak,
CONTENT OF ALKALOIDS AND FLAVONOIDS IN CELANDINE (Chelidonium majus L.) HERB AT THE SELECTED DEVELOPMENTAL PHASES
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 15 Nr 4 (2016)
-
Krzysztof Sobieralski,
Marek Siwulski,
Lidia Błaszczyk,
Barbara Frąszczak,
Iwona Sas-Golak,
IMPACT OF INFECTIONS WITH Trichoderma pleurotum AND Trichoderma pleuroticola ISOLATES ON YIELDING OF WILD STRAINS OF Pleurotus ostreatus (Fr.) Kumm. OBTAINED FROM NATURAL SITES
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 11 Nr 1 (2012)
<< < 49 50 51 52 53 54
Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.