Abstrakt
This study aimed to identify the most useful white-fleshed apple samples to distinguish apple cultivars and a clone. Whole apples, apple slices, seeds, and leaves belonging to ‘Free Redstar’, clone 118, ‘Ligolina’, ‘Pink Braeburn’, and ‘Pinokio’ were imaged using a digital camera. The texture parameters were extracted from images in color channels L, a, b, R, G, B, X, Y, Z, U, V, and S. The classification models were built using traditional machine learning algorithms. Models developed using selected image seed textures allowed the classification of apple cultivars and a clone with the highest average accuracy of up to 97.4%. The apple seeds ‘Free Redstar’ were distinguished with the highest accuracy, equal to 100%. Machine learning models built based on the textures of apple skin allowed for the clone and cultivar classification with slightly lower correctness, reaching 94%. Meanwhile, the average accuracies for models involving selected flesh and leave textures reached 86.4% and 88.8%, respectively. All the most efficient models for classifying individual apple fruit parts and leaves were developed using Multilayer Perceptron. However, models combining selected image textures of apple skin, slices (flesh), seeds, and leaves produced the highest average accuracy of up to 99.6% in the case of Bayes Net. Thus, it was found that including features of different parts of apple fruit and apple leaves in one model can allow for the correct distinguishing of apples in terms of cultivar and clone.
Bibliografia
- Azgomi, H., Haredasht, F.R., Motlagh, M.R.S. (2023). Diagnosis of some apple fruit diseases by using image processing and artificial neural network. Food Cont., 145, 109484. https://doi.org/10.1016/j.foodcont.2022.109484
DOI: https://doi.org/10.1016/j.foodcont.2022.109484
- Bhargava, A., Bansal, A. (2021). Classification and grading of multiple varieties of apple fruit. Food Anal. Methods, 14, 1359–1368. https://doi.org/10.1007/s12161-021-01970-0
DOI: https://doi.org/10.1007/s12161-021-01970-0
- Bouckaert, R.R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., Scuse, D. (2016). WEKA manual for version 3-9-1. University of Waikato, Hamilton, New Zealand.
- Buyukarikan, B., Ulker, E. (2022). Classification of physiological disorders in apples fruit using a hybrid model based on convolutional neural network and machine learning methods. Neural Comp. Appl., 34, 16973–16988. https://doi.org/10.1007/s00521-022-07350-x
DOI: https://doi.org/10.1007/s00521-022-07350-x
- Chao, X., Sun, G., Zhao, H., Li, M., He, D. (2020). Identification of apple tree leaf diseases based on deep learning models. Symmetry, 12, 1065. https://doi.org/10.3390/sym12071065
DOI: https://doi.org/10.3390/sym12071065
- Chen, J., Han, J., Liu, C., Wang, Y., Shen, H., Li, L. (2022). A deep-learning method for the classification of apple varieties via leaf images from different growth periods in natural environment. Symmetry, 14, 1671. https://doi.org/10.3390/sym14081671
DOI: https://doi.org/10.3390/sym14081671
- da Silva, L.C., Souza, M.C., Sumere, B.R., Silva, L.G.S., da Cunha, D.T., Barbero, G.F., Bezerra, R.M.N., Rostagno, M.A. (2020). Simultaneous extraction and separation of bioactive compounds from apple pomace using pressurized liquids coupled on-line with solid-phase extraction. Food Chem., 318, 126450. https://doi.org/10.1016/j.foodchem.2020.126450
DOI: https://doi.org/10.1016/j.foodchem.2020.126450
- Ding, R., Qiao, Y., Yang, X., Jiang, H., Zhang, Y., Huang, Z., Wang, D., Liu, H. (2022). Improved Res-Net based apple leaf diseases identification. IFAC-Pap., 55, 78–82. https://doi.org/10.1016/j.ifacol.2022.11.118
DOI: https://doi.org/10.1016/j.ifacol.2022.11.118
- Dubey, S.R., Jalal, A.S. (2016). Apple disease classification using color, texture and shape features from images. Sig. Image Vid. Proc., 10, 819–826. https://doi.org/10.1007/s11760-015-0821-1
DOI: https://doi.org/10.1007/s11760-015-0821-1
- Fathizadeh, Z., Aboonajmi, M., Hassan-Beygi, S.R. (2021). Classification of apples based on the shelf life using ANN and data fusion. Food Anal. Methods, 14, 706–718. https://doi.org/10.1007/s12161-020-01913-1
DOI: https://doi.org/10.1007/s12161-020-01913-1
- Frank, E., Hall, M.A., Witten, I.H. (2016). The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington.
- Krug, S., Hutschenreuther, T. (2023).. A case study toward apple cultivar classification using deep learning. AgriEngineering, 5, 814–828. https://doi.org/10.3390/agriengineering5020050
DOI: https://doi.org/10.3390/agriengineering5020050
- Liu, C., Han, J., Chen, B., Mao, J., Xue, Z., Li, S. (2020).. A novel identification method for apple (Malus domestica Borkh.) cultivars based on a deep convolutional neural network with leaf image input. Symmetry, 12, 217. https://doi.org/10.3390/sym12020217
DOI: https://doi.org/10.3390/sym12020217
- Matysiak, B., Ropelewska, E., Wrzodak, A., Kowalski, A., Kaniszewski, S. (2022). Yield and quality of romaine lettuce at different daily light integral in an indoor controlled environment. Agronomy, 12, 1026. https://doi.org/10.3390/agronomy12051026
DOI: https://doi.org/10.3390/agronomy12051026
- Nezbedova, L., McGhie, T., Christensen, M., Heyes, J., Nasef, N.A., Mehta, S. (2021). Onco-preventive and chemo-protective effects of apple bioactive compounds. Nutrients, 13, 4025. https://doi.org/10.3390/nu13114025
DOI: https://doi.org/10.3390/nu13114025
- Park, K., ki Hong, Y., hwan Kim, G., Lee, J. (2018). Classification of apple leaf conditions in hyperspectral images for diagnosis of Marssonina blotch using MRMR and deep neural network. Comput. Electron. Agric., 148, 179–187. https://doi.org/10.1016/j.compag.2018.02.025
DOI: https://doi.org/10.1016/j.compag.2018.02.025
- Rasool, A., Bhat, K.M., Mir, M.A., Jan, A., Dar, N.A., Mansoor, S. (2022). Elucidating genetic variability pertaining to flowering, maturity and morphological characters among various apple (Malus × domestica Borkh.) cultivars. South Afr. J. Bot., 145, 386–396. https://doi.org/10.1016/j.sajb.2021.06.010
DOI: https://doi.org/10.1016/j.sajb.2021.06.010
- Ronald, M., Evans, M. (2016). Classification of selected apple fruit varieties using Naive Bayes. Ind. J. Comput. Sci. Eng. (IJCSE), 7, 13–19.
- Ropelewska, E. (2020). The use of seed texture features for discriminating different cultivars of stored apples. J. Stored Prod. Res., 88, 101668. https://doi.org/10.1016/j.jspr.2020.101668
DOI: https://doi.org/10.1016/j.jspr.2020.101668
- Ropelewska, E. (2021). The application of image processing for cultivar discrimination of apples based on texture features of the skin, longitudinal section and cross-section. Eur. Food Res. Technol., 247, 1319–1331. https://doi.org/10.1007/s00217-021-03711-3
DOI: https://doi.org/10.1007/s00217-021-03711-3
- Ropelewska, E., Rutkowski, K.P. (2021). Cultivar discrimination of stored apple seeds based on geometric features determined using image analysis. J. Stored Prod. Res., 92, 101804. https://doi.org/10.1016/j.jspr.2021.101804
DOI: https://doi.org/10.1016/j.jspr.2021.101804
- Ropelewska, E., Szwejda‐Grzybowska, J. (2021). A comparative analysis of the discrimination of pepper (Capsicum annuum L.) based on the cross‐section and seed textures determined using image processing. J. Food Proc. Engineer., 44(6), e13694. https://doi.org/10.1111/jfpe.13694
DOI: https://doi.org/10.1111/jfpe.13694
- Ropelewska, E. (2022). Distinguishing lacto-fermented and fresh carrot slice images using the Multilayer Perceptron neural network and other machine learning algorithms from the groups of Functions, Meta, Trees, Lazy, Bayes and Rules. Eur. Food Res. Technol., 248, 2421–2429. https://doi.org/10.1007/s00217-022-04057-0
DOI: https://doi.org/10.1007/s00217-022-04057-0
- Ropelewska, E., Rady, A.M., Watson, N.J. (2023). Apricot stone classification using image analysis and machine learning. Sustainability, 15, 9259. https://doi.org/10.3390/su15129259
DOI: https://doi.org/10.3390/su15129259
- Sabanci, K., Ünlerşen, M.F. (2016). Different apple varieties classification using KNN and MLP algorithms. Int. J. Intell. Syst. Appl. Eng., 8, 17–20.
DOI: https://doi.org/10.18201/ijisae.2016SpecialIssue-146967
- Shafi, W., Mansoor, S., Jan, S., Singh, D.B., Kazi, M., Raish, M., Alwadei, M., Mir, J.I., Ahmad, P. (2019). Variability in catechin and rutin contents and their antioxidant potential in diverse apple genotypes. Molecules, 24, 943. https://doi.org/10.3390/molecules24050943
DOI: https://doi.org/10.3390/molecules24050943
- Strzelecki, M., Szczypinski, P., Materka, A., Klepaczko, A. (2013). A software tool for automatic classification and segmentation of 2D/3D medical images. Nucl. Instrum. Methods Phys. Res., sec. A, Accel. Spectrom. Detect. Assoc. Equip., 702, 137–140. https://doi.org/10.1016/j.nima.2012.09.006
DOI: https://doi.org/10.1016/j.nima.2012.09.006
- Szczypinski, P.M., Strzelecki, M., Materka, A. (2007). Mazda-a software for texture analysis. In: Proceedings of the 2007 International Symposium on Information Technology Convergence (ISITC 2007), Jeonju, Korea, 23–24 November 2007, pp. 245–249.
DOI: https://doi.org/10.1109/ISITC.2007.15
- Szczypinski, P.M., Strzelecki, M., Materka, A., Klepaczko, A. (2009). MaZda – A software package for image texture analysis. Comp. Meth. Prog. Biomed., 94, 66–76. https://doi.org/10.1016/j.cmpb.2008.08.005
DOI: https://doi.org/10.1016/j.cmpb.2008.08.005
- Taner, A., Mengstu, M.T., Selvi, K.Ç., Duran, H., Kabaş, Ö., Gür, İ., Karaköse, T., Gheorghiță, N.-E. (2023). Multiclass apple varieties classification using machine learning with histogram of oriented gradient and color moments. Appl. Sci., 13, 7682. https://doi.org/10.3390/app13137682
DOI: https://doi.org/10.3390/app13137682
- Witten, I.H., Frank, E. (2005). Data mining: practical machine learning tools and techniques. Elsevier, San Francisco.
- Wu, J., Gao, H., Zhao, L., Liao, X., Chen, F., Wang, Z., Hu, X. (2007). Chemical compositional characterization of some apple cultivars. Food Chem., 103, 88–93. https://doi.org/10.1016/j.foodchem.2006.07.030
DOI: https://doi.org/10.1016/j.foodchem.2006.07.030
- Zhang, S., Wang, D., Yu, C. (2023). Apple leaf disease recognition method based on Siamese dilated Inception network with less training samples. Comp. Electron. Agric., 213, 108188. https://doi.org/10.1016/j.compag.2023.108188
DOI: https://doi.org/10.1016/j.compag.2023.108188
- Zhang, M., Yin, Y., Li, Y., Jiang, Y., Hu, X., Yi, J. (2023). Chemometric classification of apple cultivars based on physicochemical properties: raw material selection for processing applications. Foods, 12, 3095. https://doi.org/10.3390/foods12163095
DOI: https://doi.org/10.3390/foods12163095
- Żurawicz, E., Zagaja, S.W. (1999). Breeding apple cultivars at the Research Institute of Pomology and Floriculture, Skierniewice, Poland. Acta Hort., 484, 221–224. https://doi.org/10.17660/ActaHortic.1998.484.38
DOI: https://doi.org/10.17660/ActaHortic.1998.484.38
Downloads
Download data is not yet available.
-
Hanna Piekarska-Boniecka,
Idzi Siatkowski,
Joanna Zyprych-Walczak,
Paweł Trzciński,
Marta Rzańska-Wieczorek,
THE PHENOLOGY OF OCCURRENCE OF DOMINANT PREDATORY SYRPHIDAE (DIPTERA) SPECIES IN APPLE ORCHARDS AND ON THEIR EDGES
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 16 Nr 1 (2017)
-
Sylwester Smoleń,
Włodzimierz Sady,
THE EFFECT OF FOLIAR NUTRITION WITH UREA, MOLYBDENUM, SUCROSE AND BENZYLADENINE ON QUANTITY AND QUALITY OF RADISH YIELD
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 8 Nr 2 (2009)
-
Fatemeh Nejatzadeh-Barandozi,
INVESTIGATION OF SUPER ABSORBENT POLYMERS AND ZINC SULFATE ON THE YIELD AND YIELD COMPONENTS OF Calendula officinalis L.
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 18 Nr 2 (2019)
-
Wiesława Rosłon,
Ewa Osińska,
Anna Wajs-Bonikowska,
EFFECT OF PLANTATION ESTABLISHMENT AND RAW MATERIAL STABILIZATION ON THE USEFULL TRAITS OF LOVAGE LEAVES (Levisticum officinale Koch.)
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 12 Nr 1 (2013)
-
Kazim Gündüz,
Fırat Ege Karaat,
Fulya Uzunoğlu,
Kazım Mavi,
INFLUENCES OF PRE-SOWING TREATMENTS ON THE GERMINATION AND EMERGENCE OF DIFFERENT MULBERRY SPECIES SEEDS
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 18 Nr 2 (2019)
-
Aleksander Stachowiak,
Sławomir Świerczyński,
GROWTH OF MAIDEN APPLE TREES OF ‘GALAXY’ AND ‘RUBIN’ ON ROOTSTOCKS CLONES ORIGINATING FROM CROSSING A.2 × B.9
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 10 Nr 2 (2011)
-
Malvina Chitilova,
Nilgün Candan Yücel,
DOES FISH FLOUR AND CALCIUM IMPROVE MENTHA DEVELOPMENT, ENZYME ACTIVITIES AND PHENOLIC COMPOUNDS UNDER HIGH SALINITY
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 18 Nr 2 (2019)
-
Gultekin Ozdemir,
Nurgul Kitir,
Metin Turan,
Ekrem Ozlu,
IMPACTS OF ORGANIC AND ORGANO-MINERAL FERTILIZERS ON TOTAL PHENOLIC, FLAVONOID, ANTHOCYANIN AND ANTIRADICAL ACTIVITY OF OKUZGOZU (Vitis vinifera L.) GRAPES
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 17 Nr 3 (2018)
-
Adnan Younis,
Muhammad Saleem Akhtar,
Atif Riaz,
Faisal Zulfiqar,
Muhammad Qasim,
Amjad Farooq,
Usman Tariq,
Muhammad Ahsan,
Zahid Mukthar Bhatti,
IMPROVED CUT FLOWER AND CORM PRODUCTION BY EXOGENOUS MORINGA LEAF EXTRACT APPLICATION ON GLADIOLUS CULTIVARS
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 17 Nr 4 (2018)
-
Audrius Radzevičius,
Pranas Viškelis,
Jonas Viškelis,
Rasa Karklelienė,
Danguolė Juškevičienė,
Pavelas Duchovskis,
TOMATO BIOCHEMICAL COMPOSITION AND QUALITY ATTRIBUTES IN DIFFERENT MATURITY FRUITS
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 15 Nr 6 (2016)
<< < 16 17 18 19 20 21 22 23 24 25 > >>
Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.