Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Modyfikacje genetyczne szansą na poprawę najważniejszych cech jakościowych roślin zbożowych. Praca przeglądowa

KAROLINA DUDZIAK

Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, ul. Akademicka 15, 20-950 Lublin

MICHAŁ NOWAK

Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, ul. Akademicka 15, 20-950 Lublin

KRZYSZTOF KOWALCZYK

Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, ul. Akademicka 15, 20-950 Lublin


Abstrakt

Postęp w zakresie transformacji zbóż, jaki miał miejsce przez ostatnie dwie dekady, ma ogromne znaczenie dla nauki oraz rolnictwa. Dotychczas w transformacji zbóż posługiwano się głównie technikami bezwektorowymi, przede wszystkim bezpośrednią metodą transferu genów, tzw. strzelbą genową (gene gun). Osiągnięcia z zakresu agrobiotechnologii umożliwiły transformację zbóż przy użyciu bakterii glebowej Agrobacterium tumefaciens, która do niedawna nie była wykorzystywane w doświadczeniach na zbożach, gdyż rośliny jednoliścienne nie stanowią dla niej organizmu gospodarza i nie wykazują objawów choroby guzowatości korzenia przez nią powodowanej. Obecnie pięć gatunków zbóż o największym znaczeniu gospodarczym – ryż (Oryza sativa L.), kukurydza (Zea mays L.), pszenica (Triticum aestivum L.), jęczmień (Hordeum vulgare L.) i sorgo (Sorghum bicolor L.) – jest powszechnie poddawanych transformacji z udziałem A. tumefaciens. Wykorzystanie narzędzi genetyki molekularnej pozwala na uzyskanie zbóż o nowych, polepszonych cechach. W niniejszej pracy skupiono się na możliwości rozwoju rolnictwa poprzez wdrażanie genetycznie zmodyfikowanych zbóż odpornych na stresy biotyczne i abiotyczne oraz podsumowano najważniejsze osiągnięcia ostatnich lat z zakresu transformacji zbóż.

Słowa kluczowe:

transformacje, Agrobacterium tumefaciens, zboża, tolerancja na stresy, genetycznie modyfikowane zboża

Abass M., Morris P.C., 2013. The Hordeum vulgare signalling protein MAP kinase 4 is a regulator of biotic and abiotic stress responses. J. Plant Physiol. 170 (15), 1353–1359.

Abouseadaa H.H., Osman G.H., Ramadan A.M., Hassanein S.E., Abdelsattar M.T., Morsy Y.B., Bahieldin A., 2015. Development of transgenic wheat (Triticum aestivum L.) expressing avidin gene conferring resistance to stored product insects. BMC Plant Biol. 15 (1), 183.

Akiyama T., Pillai M.A., Sentoku N., 2004. Cloning, characterization and expression of OsGLN2, a rice endo-1,3-betaglucanase gene regulated developmentally in flowers and hormonally in germinating seeds. Planta, 22, 129–139.

Beazley K.A, Castiglioni P., Dizigan M.A., Kelly R.A., Korte J.A., Rock A. et al., 2012. Corn plant event mon87460 and compositions and methods for detection thereof [US 20110138504].

Brunner S., Stirnweis D., Diaz Quijano C., Buesing G., Herren G., Parlange F., Keller B., 2012. Transgenic Pm3 multilines of wheat show increased powdery mildew resistance in the field. Plant Biotechnol. J. 10 (4), 398–409.

Von Burg S., Álvarez-Alfageme F., Romeis J., 2012. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance. PloS One, 7 (10), e46333.

Cao X., Lu Y., Di D., Zhang Z., Liu H., Tian L., Li D., 2013. Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E. coli. PloS One 8 (4).

Chan M.T., Chang H.H., Ho S.L., Tong W.F., Yu S.M., 1993. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter/beta-glucuronidase gene. Plant Mol. Biol. 22 (3), 491–506.

Chen H., Chen W., Zhou J., He H., Chen L., Chen H., Deng X.W., 2012a. Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Science: An International Journal of Experimental Plant Biology, 193–194, 8–17.

Chen Z., Pan Y., Wang S., Ding Y., Yang W., Zhu C., 2012b. Overexpression of a protein disulfide isomerase-like protein from Methanothermobacter thermoautotrophicum enhances mercury tolerance in transgenic rice. Plant Sci. Int. J. Experiment. Plant Biol. 197, 10–20.

Chen Y.-J., Perera V., Christiansen M., Holme I.B., Gregersen P.L., Grant M.R., Lyngkjær M.F., 2013. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew. Plant Mol. Biol. 83 (6), 577–590.

Choe Y.-H., Kim Y.-S., Kim I.-S., Bae M.-J., Lee E.-J., Kim Y.-H., Yoon H.-S., 2013. Homologous expression of γ-glutamylcysteine synthetase increases grain yield and tolerance of transgenic rice plants to environmental stresses. J. Plant Physiol. 170 (6), 610–618.

Delhaize E., Ryan P.R., Hebb D.M., Yamamoto Y., Sasaki T., Matsumoto H., 2004. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc. Natl. Acad. Sci. U.S.A. 101 (42), 15249–15254.

Dong W., Wang M., Xu F., Quan T., Peng K., Xiao L., Xia G., 2013. Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. Plant Physiol. 161 (3), 1217–1228.

Douglas C., Halperin W., Gordon M., Nester E., 1985. Specific attachment of Agrobacterium tumefaciens to bamboo cells in suspension cultures. J. Bacteriol, 161, 764–766.

Dowd P.F., Johnson E.T., Price N.P., 2012. Enhanced pest resistance of maize leaves expressing monocot crop plant-derived ribosome-inactivating protein and agglutinin. J. Agric. Food Chem. 60 (43), 10768–10775.

Du H.-Y., Shen Y.-Z., Huang Z.-J., 2013. Function of the wheat TaSIP gene in enhancing drought and salt tolerance in transgenic Arabidopsis and rice. Plant Mol. Biol. 81 (4–5), 417–429.

Duan J., Zhang M., Zhang H., Xiong H., Liu P., Ali J., Li Z., 2012. OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Sci. Int. J. Experiment. Plant Biol. 196, 143–151.

Dunwell J.M., 2008. Transgenic wheat, barley and oats: future prospects. W: Jones H.D., Shewry P.R. (eds.), Transgenic wheat, barley and oats: Production and characterisation, Methods in Molecular Biology 478. Humana Press, 333–345.

Dunwell J.M., 2014. Transgenic cereals: Current status and future prospects. J. Cereal Sci. 59 (3), 419–434.

Edgerton M.D., Fridgen J., Anderson J.R., Ahlgrim J., Criswell M., Dhungana P., Stark S.B., 2012. Transgenic insect resistance traits increase corn yield and yield stability. Nat. Biotechnol. 30 (6), 493–496.

Fahim M., Millar A.A., Wood C.C., Larkin P.J., 2012. Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol. J. 10 (2), 150–163.

Ferrari S., Sella L., Janni M., De Lorenzo G., Favaron F., D’Ovidio R., 2012. Transgenic expression of polygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum. Plant Biol. 14 (1), 31–38.

Funke T., Han H., Healy-Fried M.L., Fischer M., Schönbrunn E., 2006. Molecular basis for the herbicide resistance of Roundup Ready crops. Proc. Natl. Acad. Sci. U.S.A. 103 (35),
13010–13015.

Gao C.-S., Kou X.-J., Li H.-P., Zhang J.-B., Saad A.S.I., Liao Y.-C., 2013. Inverse effects of Arabidopsis NPR1 gene on fusarium seedling blight and fusarium head blight in transgenic wheat. Plant Pathol. 62 (2), 383–392.

Gómez-Galera S., Sudhaka D., Pelacho A.M., Capell T., Christou P., 2012. Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress. Plant Physiol. Biochem. (Paris) 53, 46–53.

Graves A.F., Goldman S.L., 1986. The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol. Biol. 7, 43–50.

Hackenberg M., Shi B.-J., Gustafson P., Langridge P., 2012. A transgenic transcription factor (TaDREB3) in barley affects the expression of microRNAs and other small non-coding RNAs. PloS One, 7 (8), e42030.

Haegele J.W., Below F.E., 2013. Transgenic corn rootworm protection increases grain yield and nitrogen use of maize. Crop Sci. 53 (2), 585.

Han J., Lakshman D.K., Galvez L.C., Mitra S., Baenziger P.S., Mitra A., 2012. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum. BMC Plant Biol. 12 (1), 33.

Han C., Zhong W., Shen W., Cai Z., Liu B., 2013. Transgenic Bt rice has adverse impacts on CH4 flux and rhizospheric methanogenic archaeal and methanotrophic bacterial communities. Plant and Soil 369 (1–2), 297–316.

Hiei Y., Komari T., 2008. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 3, 824–834.

Hiei Y., Ohta S., Komari T., Kumashiro T., 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6 (2), 271–282.

Hoekema A., Hirsch P.R., Hooykaas P.J.J., Schilperoort R.A., 1983. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179–180.

http://planttfdb.cbi.pku.edu.cn/family.php?fam=NAC

http://web.mit.edu/demoscience/Monsanto/about.html

Ignacimuthu S., Ceasar S.A., 2012. Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J. Biosci. 37, 135–147.

Ishida Y., Saito H., Ohta S., Hiei Y., Komari T., Kumashiro T., 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotechnol. 14, 745–750.

Kahl G., 1982. Molecular biology of wound healing: the conditioning phenomenon. W: Kahl G., Schell J. (eds), Molecular biology of plant tumors. Academic Press, New York, 211–267.

Kishimoto K., Kouzai Y., Kaku H., Shibuya N., Minami E., Nishizawa Y., 2010. Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus Magnaporthe oryzae in rice. Plant J. Cell Mol. Biol. 64 (2), 343–354.

Kovalchuk N., Jia W., Eini O., Morran S., Pyvovarenko T., Fletcher S., Lopato S., 2013. Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters. Plant Biotechnol. J. 11 (6), 659–670.

Kumar K.K., Poovannan K., Nandakumar R., Thamilarasi K., Geetha C., Jayashree N., Kokiladevi E., Raja J.A.J., Samiyappan R., Sudhakar D., Balasubramanian P., 2003. A high throughput functional expression assay system for a defense gene conferring transgenic resistance on rice against the sheath blight pathogen, Rhizoctonia solani. Plant Sci. 165, 969–976.

Li X., Hou S., Gao Q., Zhao P., Chen S., Qi D., Lee B.H., Cheng L., Liu G., 2013. LcSAIN1, a novel salt-induced gene from sheepgrass, confers salt stress tolerance in transgenic Arabidopsis and rice. Plant Cell Physiol. 54, 1172–1185.

Li C., Wei J., Lin Y., Chen H., 2012. Gene silencing using the recessive rice bacterial blight resistance gene xa13 as a new paradigm in plant breeding. Plant Cell Rep. 31 (5), 851–862.

Liu A.-L., Zou J., Liu C.-F., Zhou X.-Y., Zhang X.-W., Luo G.-Y., Chen X.-B., 2013. Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice. BMB Reports, 46 (1), 31–36.

Lu Y., Li Y., Zhang J., Xiao Y., Yue Y., Duan L., Li Z., 2013. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). PloS One, 8 (1), e52126.

Morell M.K., 2012. New cereal value chain: from seed to sewage. Cereal Foods World 57, 44–49.

Mrízová K., Holasková E., Öz M.T., Jiskrová E., Frébort I., Galuszka P., 2014. Transgenic barley: a prospective tool for biotechnology and agriculture. Biotechnol. Adv. 32 (1), 137–157.

Narva K.E., Siegfried B.D., Storer N.P., 2013. Transgenic approaches to western corn rootworm control. Adv. Biochem. Eng. Biotechnol. 136, 135–162.

Nishizawa Y., Saruta M., Nakazono K., Nishio Z., Soma M., Yoshida T., Nakajima E., Hibi T. 2003. Characterization of transgenic rice plants over-expressing the stress-inducible b-glucanase gene Gns1. Plant Mol. Biol. 51, 143–152.

Oraby H., Ahmad R., 2012. Physiological and biochemical changes of CBF3 transgenic oat in response to salinity stress. Plant Sci. Int. J. Exp. Plant Biol. 185–186, 331–339.

Ostry V., Ovesna J., Skarkova J., Pouchova V., Ruprich J., 2010. A review on comparative data concerning Fusarium mycotoxins in Bt maize and non-Bt isogenic maize. Mycotoxin Res. 26 (3), 141–145.

Pei L., Wang J., Li K., Li Y., Li B., Gao F., Yang A., 2012. Overexpression of Thellungiella halophila H +-pyrophosphatase gene improves low phosphate tolerance in maize. PLoS One 7, e43501.

Peng X., Hu Y., Tang X., Zhou P., Deng X., Wang H., Guo Z., 2012. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236 (5), 1485–1498.

Potrykus I., 1990. Gene transfer to cereals: An assessment. Bio/Technology 8 (6), 535–542.

Queiroz A.R.S., Vidal R.A., 2014. The development of dichlorophenoxyacetate herbicide tolerant crops: literature review. Planta Daninha 32 (3), 649–654.

Rawat N., Neelam K., Tiwari V.K., Dhaliwal H.S., 2013. Biofortification of cereals to overcome hidden hunger. Plant Breed. 132, 437–444.

Ryan P.R., Skerrett M., Findlay G.P., Delhaize E., Tyerman S.D., 1997. Aluminum activates an anion channel in the apical cells of wheat roots. Proc. Natl. Acad. Sci. 94 (12), 6547–6552.

Sasaki T., Yamamoto Y., Ezaki B., Katsuhara M., Ahn S.J., Ryan P.R., Matsumoto H., 2004. A wheat gene encoding an aluminum-activated malate transporter. Plant J. 37 (5), 645–653.

Shimizu T., Nakazono-Nagaoka E., Akita F., Wei T., Sasaya T., Omura T., Uehara-Ichiki T., 2012. Hairpin RNA derived from the gene for Pns9, a viroplasm matrix protein of Rice gall dwarf virus, confers strong resistance to virus infection in transgenic rice plants. J. Biotechnol. 157 (3), 421–427.

Shimizu T., Ogamino T., Hiraguri A., Nakazono-Nagaoka E., Uehara-Ichiki T., Nakajima M., Sasaya T., 2013. Strong resistance against Rice grassy stunt virus is induced in transgenic rice plants expressing double-stranded RNA of the viral genes for nucleocapsid or movement proteins as targets for RNA interference. Phytopathology 103 (5), 513–519.

Shou H., Bordallo P., Fan J.B., Yeakley J.M., Bibikova M., Sheen J., et al. 2004. Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc. Natl. Acad. Sci. U.S.A. 101, 3298–3303.

Soltész A., Vágújfalvi A., Rizza F., Kerepesi I., Galiba G., Cattivelli L., Coraggio I., Crosatti C., 2011. The rice Osmyb4 gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants. J. Appl. Genet. 53, 133–143.

Sridevi G., Parameswari C., Sabapathi N., Raghupathy V., Veluthambi K., 2008. Combined expression of chitinase and b-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci. 175, 283–290.

Sun S., Gu M., Cao Y., Huang X., Zhang X., Ai P., Xu G., 2012. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol. 159 (4), 1571–1581.

Stachel S.E., Messens E., van Montagu M., Zambryski P., 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318 (6047), 624–629.

Takahashi R., Ishimaru Y., Shimo H., Ogo Y., Senoura T., Nishizawa N.K., Nakanishi H., 2012. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ. 35 (11), 1948–1957.

Tabashnik B.E., Brévault T., Carrière Y., 2013. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31 (6), 510–521.

Todaka D., Nakashima K., Maruyama K., Kidokoro S., Osakabe Y., Ito Y., Yamaguchi-Shinozaki K., 2012. Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress. Proc. Natl. Acad. Sci. U.S.A. 109 (39), 15947–15952.

Usami S., Morikawa S., Takebe I., Machida Y., 1987. Absence in monocotyledonous plants of the diffusible plant factors inducing T-DNA circularization and vir gene expression in Agrobacterium. Mol. Gen. Genet. 209 (2), 221–226.

van der Linde K., Hemetsberger C., Kastner C., Kaschani F., van der Hoorn R.A., Kumlehn J., Doehlemann G., 2012. A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. Plant Cell 24, 1285–1300.

Várallyay E., Giczey G., Burgyán J., 2012. Virus-induced gene silencing of Mlo genes induces powdery mildew resistance in Triticum aestivum. Arch. Virol. 157 (7), 1345–1350.

Velasco A.G.-V., Kowalchuk G.A., Mañero F.J.G., Ramos B., Yergeau E., García J.A.L., 2013. Increased microbial activity and nitrogen mineralization coupled to changes in microbial community structure in the rhizosphere of Bt corn. Appl. Soil Ecol. 68, 46–56.

Wang J., Sun, J., Miao J., Guo J., Shi Z., He M., Chen Y., Zhao X., Li B., Han F., Tong Y., Li Z., 2013. A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signalling and increases grain yield in wheat. Ann. Bot. 111, 1139–1153.

Wiśniewska H., Stępień Ł., Waśkiewicz A., Beszterda M., Góral T., Belter J., 2014. Toxigenic Fusarium species infecting wheat heads in Poland. Cent. Eur. J. Biol. 9 (2) 163–172.

Wu E., Lenderts B., Glassman K., Berezowska-Kaniewska M., Christensen H., Asmus T., et al., 2014. Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell. Dev. Biol. Plant 50, 9–18.

Zeller S.L., Kalinina O., Schmid B., 2013. Costs of resistance to fungal pathogens in genetically modified wheat. J. Plant Ecol. 6, 92e100.

Zhang W.-H., 2001. Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol. 125 (3), 1459–1472.

Zhang S., Haider I., Kohlen W., Jiang L., Bouwmeester H., Meijer A.H., Ouwerkerk P.B.F., 2012. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol. Biol. 80 (6), 571–585.

Zhou Y., Yuan Y., Yuan F., Wang M., Zhong H., Gu M., Liang G., 2012. RNAi-directed down-regulation of RSV results in increased resistance in rice (Oryza sativa L.). Biotechnol. Lett. 34 (5), 965–972.

Zhu X., Li Z., Xu H., Zhou M., Du L., Zhang Z., 2012. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Funct. Integr. Genomics 12 (3), 481–488.

Zhu H., Xu X., Xiao G., Yuan L., Li B., 2007. Enhancing disease resistances of super hybrid rice with four antifungal genes. Sci. China C Life Sci. 50, 31–39.
Pobierz

Opublikowane
07-05-2016



KAROLINA DUDZIAK 
Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, ul. Akademicka 15, 20-950 Lublin
MICHAŁ NOWAK 
Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, ul. Akademicka 15, 20-950 Lublin
KRZYSZTOF KOWALCZYK 
Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, ul. Akademicka 15, 20-950 Lublin



Licencja

Artykuły są udostępniane na zasadach CC BY 4.0 (do 2020 r. na zasadach CC BY-NC-ND 4.0)..
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.

Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.

 

Czasopismo Agronomy Science przyjęło politykę samoarchiwizacji nazwaną przez bazę Sherpa Romeo drogą niebieską. Od 2021 r. autorzy mogą samoarchiwizować postprinty artykułów oraz wersje wydawnicze (zgodnie z licencją CC BY). Artykuły z lat wcześniejszych (udostępniane na licencji CC BY-NC-ND 4.0) mogą być samoarchiwizowane tylko w wersji wydawniczej.

 


Inne teksty tego samego autora

1 2 > >>