FLUCTUATIONS IN MELATONIN CONTENT AND ITS EFFECTS ON THE AGEING PROCESS OF LETTUCE SEEDS DURING STORAGE

Gökçen Yakupoglu

Yozgat Bozok University, Department of Horticulture, Yozgat, Turkey

Şebnem Köklü

Kahramanmaraş Sütçü Imam University, Faculty of Agriculture, Department of Horticulture, Kahramanmaraş, Turkey

Aygül Karaca

Kahramanmaraş Sütçü Imam University, Faculty of Agriculture, Department of Horticulture, Kahramanmaraş, Turkey

Elif Düver

Kahramanmaraş Sütçü Imam University, Faculty of Agriculture, Department of Horticulture, Kahramanmaraş, Turkey

Russel J. Reıter

Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA

Ahmet Korkmaz

Kahramanmaraş Sütçü Imam University, Faculty of Agriculture, Department of Horticulture, Kahramanmaraş, Turkey


Abstract

This research was carried out to determine the changes in melatonin and tryptophan contents and the possible effects of melatonin on the ageing process of lettuce seeds stored for two years. For this purpose, seeds were treated with melatonin (0 or 250 µM) for one day after which they were stored for up to two years at two temperature (4°C or 25°C) regimes. The results showed that seed melatonin content varied significantly during storage reaching its peaks in October-December and lowest levels in August while tryptophan levels displayed an opposite trend with a strong peak in August and low levels in October. Similar seasonal changes were observed in seeds stored under both temperature conditions suggesting that endogenous melatonin could play a crucial role in seasonal rhythms independent of environmental conditions. Lettuce seed quality deteriorated fast when stored at 25°C but pre-treatment with melatonin reduced seed deterioration significantly by increasing the activities of antioxidant enzymes and restoring membrane properties indicating that melatonin could be used to slow the ageing process in seeds.

Keywords:

germination, melatonin, seed ageing, seed storage, tryptophan

Ajayi, S.A., Fakorede, M.A.B., Rühl, G., Gref, J.M. (2001). Defining seed quality by seed maturity and crop performance. J. New. Seeds 3, 49–71, https://doi.org/10.1300/J153v03n02_04.

Arnao, M.B. (2014). Phytomelatonin: discovery, content, and role in plants. Adv. Bot., e815769.

Arnao, M.B., Hernández-Ruiz, J. (2009). Assessment of different sample processing procedures applied to the determination of melatonin in plants. Phytochem. Anal., 20, 14–18.

Arnao, M.B., Hernández-Ruiz, J. (2013). Growth conditions determine different melatonin levels in Lupinus albus L. J. Pineal Res., 55, 149–155, https://doi:10.1111/jpi.12055.

Arnao, M.B., Hernández-Ruiz, J. (2015). Functions of melatonin in plants: a review. J. Pineal Res., 59, 133–150,, https://doi.org/10.1111/jpi.12253.

Arnao, M.B., Hernández-Ruiz, J. (2018). Melatonin in its relationship to plant hormones. Ann. Bot., 121, 195–207.

Arnao, M.B., Hernández-Ruiz, J. (2019a). Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network. Melatonin Res., 2, 152–168.

Arnao, M.B., Hernández-Ruiz, J. (2019b). Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci., 24, 38–48.

Arnao, M.B., Hernández-Ruiz, J. (2020). Is phytomelatonin a new plant hormone? Agronomy, 10, 95.

Bailly, C., El-Maarouf-Bouteau, H., Corbineau, F. (2008). From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C. R. Biol., 33, 806–814, https://doi.org/10.1016/j.crvi.2008.07.022.

Boccalandro, H.E., Gonzalez, C.V., Wunderlin, D.A., Silva, M.F. (2011). Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits. J. Pineal Res. 51, 226–232, https://doi.org/10.1111/j.1600-079X.2011.00884.x.

Cao, Q., Li, G., Cui, Z., Yang, F., Jiang, X., Diallo, L., Kong, F. (2019). Seed priming with melatonin improves the seed germination of waxy maize under chilling stress via promoting the antioxidant system and starch metabolism. Scientific Reports, 9, 15044.

Cui, G., Zhao, X., Liu, S., Sun, F., Zhang, C., Xi, Y. (2017). Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol. Biochem., 118, 138–149, DOI: 10.1016/j.plaphy.2017.06.014.

Demir, I., Ozcoban, M. (2007). Dry and ultra-dry storage of pepper, aubergine, winter squash, summer squash, bean, cowpea, okra, onion, leek, cabbage, radish, lettuce and melon seeds at –20°C and 20°C over five years. Seed Sci. Technol. 35, 165–175, https://doi.org/10.15258/sst.2007.35.1.15.

Demir, I., Ozden, E., Kara, F., Hassanzadeh, M., Mavi K. (2016). Effects of ambient storage temperature and seed moisture content on seed longevity of lettuce (Lactuca sativa). AJEA. 12, 1–5, DOI:10.9734/AJEA/2016/25526.

Deng, B., Yang, K., Zhang, Y., Li, Z. (2017). Can antioxidant’s reactive oxygen species (ROS) scavenging capacity contribute to aged seed recovery? Contrasting effect of melatonin, ascorbate and glutathione on germination ability of aged maize seeds. Free Radic. Res. 51 (9–10), 765–771, https://doi.org/10.1080/10715762.2017.1375099.

Dolatabadian, A., Sanavy, S.A.M.M., Chashmi, N.A. (2008). The effects of foliar application of ascorbic acid (vitamin c) on antioxidant enzymes activities, lipid peroxidation and proline accumulation of canola (Brassica napus L.) under conditions of salt stres. J. Agro. Crop Sci., 194, 206–213, https://doi.org/10.1111/j.1439-037X.2008.00301.x.

Ellis, R.H. (1992). Seed and seedling vigour in relation to crop growth and yield. Plant Growth Regul., 11, 249-255, https://link.springer.com/article/10.1007/BF00024563.

Engler, A.C., Hadash, A., Shehadeh, N., Pillar, G. (2012). Breastfeeding may improve nocturnal sleep and reduce infantile colic: Potential role of breast milk melatonin. Eur. J. Pediatr., 171, 729–732.2. https://link.springer.com/article/10.1007/s00431-011-1659-3.

Hattori, A., Migitaka, H., Iigo, M., Itoh, M., Yamamoto, K., Ohtani-Kaneko, R., Hara, M., Suzuki, T., Reiter, R.J. (1995). Identificatio n of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int., 35, 627–634, https://europepmc.org/article/med/7773197.

ISTA. (2005). International rules for seed testing. International Seed Testing Association, Bassersdorf.

Jyoti, Malik, C. P. (2013). Seed deterioration: a review. Int. J. Life Sci. Biotechnol. Pharma Res., 2(3), 374-385.

Kapoor, N., Arya, A., Siddiqui, M.A., Kumar, H., Amir, A. (2011). Physiology and biochemical changes during seed deterioration in aged seeds of rice (Oryza sativa L.). Amer. J. Plant Physiol., 61, 28–35, https://scialert.net/abstract/?doi=ajpp.2011.28.35.

Karasek, M. (2004). Melatonin, human aging, and age-related diseases. Exp. Gerontol., 39, 1723–1729, https://doi.org/10.1016/j.exger.2004.04.012.

Kolár, J., Machácková, I. (2005). Melatonin in higher plants: occurrence and possible functions. J. Pineal Res., 39, 333–341, https://doi.org/10.1111/j.1600-079X.2005.00276.x.

Kołodziejczyk, I., Balabusta, M., Szewczyk, R., Posmyk, M.M. (2015). The levels of melatonin and its metabolites in conditioned corn (Zea mays L.) and cucumber (Cucumis sativus L.) seeds during storage. Acta Physiol. Plant, 37, 105, https://link.springer.com/article/10.1007/s11738-015-1850-7.

Korkmaz, A., Değer, Ö., Cuci, Y. (2014). Profiling the melatonin content in organs of the pepper plant during different growth stages. Sci. Hortic., 172, 242–247, https://doi.org/10.1016/j.scienta.2014.04.018.

Korkmaz, A., Karaca, A., Kocaçınar, F., Cuci, Y. (2017a). The effects of seed treatment with melatonin on germination and emergence performance of pepper seeds under chilling stress. J. Agric. Sci., 23, 167–176, http://tarimbilimleri.agri.ankara.edu.tr/2017/23_2/2.makale.pdf.

Korkmaz, A., Yakupoğlu, G., Köklü, Ş., Cuci, Y., Kocaçınar, F. (2017b). Determining diurnal and seasonal changes in tryptophan and melatonin content of eggplant (Solanum melongena L.). Turk. J. Bot., 41, 356–366, http://journals.tubitak.gov.tr/botany/issues/bot-17-41-4/bot-41-4-4-1611-48.pdf.

Lerner, A.B., Case, J.D., Takahashi, Y. (1958). Isolation of melatonin, a pineal factor that lightness melanocytes. J. Am. Cem. Soc., 80, 2587, https://doi.org/10.1021/ja01543a060.

Li, C., Wang, P., Wei, Z., Liang, D., Liu, C., Yin, L., Jia, D., Fu, M., Ma, F. (2012). The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J. Pineal Res., 53, 298–306, https://doi.org/10.1111/j.1600-079X.2012.00999.x.

Li, D., Wei, J., Peng, Z., Ma, W., Yang, Q., Song, Z., Sun, W., Yang, W., Yuan, L., Xu, X., Chang, W., Rengel, Z., Shen, J., Reiter, R. J., Cui, X., Yu, D., Chen, Q. (2020). Daily rhythms of phytomelatonin signaling modulate diurnal stomatal closure via regulating reactive oxygen species dynamics in Arabidopsis. J. Pineal Res., 68, e12640.

Li, J., Zhao, C., Zhang, M., Yuan, F., Chen, M. 2019. Exogenous melatonin improves seed germination in Limonium bicolor under salt stress. Plant Sign Behav., 1–10.

Mansouri-Far, C., Goodarzian-Ghahfarokhi, M., Saeidi, M., Abdoli, M. (2015). Antioxidant enzyme activity and germination characteristics of different maize hybrid seeds during ageing. Environ. Exp. Biol., 13, 177–182, https://www.researchgate.net/profile/Maryam_Goodarzian2/publication/295904919_Antioxidant_enzyme_activity_and_germination_characteristics_of_different_maize_hybrid_seeds_during_ageing/links/56cf8def08ae059e375976c7.pdf.

Nagel, M., Börner, A. (2010). The longevity of crop seeds stored under ambient conditions. Seed Sci. Res., 20, 1–12, https://doi.org/10.1017/S0960258509990213.

Morera, A.L., Abreu, P. (2006). Seasonality of psychopathology and circannual melatonin rhythm. J. Pineal Res., 41, 279–283, https://doi.org/10.1111/j.1600-079X.2006.00365.x.

Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22, 867–880, https://doi.org/10.1093/oxfordjournals.pcp.a076232.

Özden, M., Demirel, U., Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Sci. Hortic., 119, 163–168. https://doi.org/10.1016/j.scienta.2008.07.031.

Paul, M.A., Love, R.J., Hawton, A., Arendt, J. (2015). Sleep and the endogenous melatonin rhythm of high artic residents during summer and winter. Physiol. Behav., 141, 199–206, https://doi.org/10.1016/j.physbeh.2015.01.021.

Posmyk, M.M., Janas, K.M. (2009). Melatonin in plants. Acta Physiol. Plant, 31, 1–11, https://link.springer.com/content/pdf/10.1007/s11738-008-0213-z.pdf.

Posmyk, M.M., Kuran, H., Marciniak, K., Janas, K.M. (2008). Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J. Pineal Res., 45, 24–31, https://doi.org/10.1111/j.1600-079X.2007.00552.x.

Reiter, R.J. (1991). Melatonin: the chemical expression of darkness. Mol. Cell Endocrinol., 79, C153–C158, https://doi.org/10.1016/0303-7207(91)90087-9.

Reiter, R., Tan, D., Manchester, L., Simopoulos, A.P., Maldonado, M.D., Flores, L.J., Terron, M.P. (2007). Melatonin in edible plants (phytomelatonin): identification, concentrations, bioavailability and proposed functions. World Rev. Nutr. Diet, 97, 211–230, DOI: 10.1159/000097917.

Reiter, R.J., Rosales-Corral, S., Tan, D.X., Jou, M.J., Galano, A., Xu, B. (2017). Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol. Life Sci., 21, 3863–3881, https://link.springer.com/content/pdf/10.1007/s00018-017-2609-7.pdf.

Reiter, R.J., Tan, D.X., Zhou, Z., Cruz, M.H., Fuentes-Broto, L., Galano, A. (2015). Phytomelatonin: assisting plants to survive and thrive. Molecules, 20, 7396–7437, https://doi.org/10.3390/molecules20047396.

Schwember, A.R., Bradford, K.J. (2011). Oxygen interacts with priming, moisture content and temperature to affect the longevity of lettuce and onion seeds. Seed Sci. Res., 21, 175–185, https://doi.org/10.1017/S0960258511000080.

Seckin, B., Turkan, I., Sekmen, A.H., Özfidan, C. (2010). The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barley grass) and Hordeum vulgare L. (cultivated barley). Environ. Exp. Bot., 69, 76–85, https://doi.org/10.1016/j.envexpbot.2010.02.013.

Shi, H., Jiang, C., Ye, T., Tan, D.X., Reiter, R.J., Zhang, H., Liu, R., Chan, Z. (2015). Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermuda grass (Cynodon dactylon (L). Pers.) by exogenous melatonin. J. Exp. Bot., 66, 681–694. https://doi.org/10.1093/jxb/eru373.

Simlat, M., Ptak, A., Warchol, M., Moranska, E., Piórkowska, E. (2018). Melatonin significantly influences seed germination and seedling growth of Stevia rebaudiana Bertoni. PeerJ, 6, e5009.

Tan, D.X., Hardeland, R., Manchester, L.C., Korkmaz, A., Ma, S., Rosales-Corral, S., Reiter, R.J. (2012). Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J. Exp. Bot., 63, 577–597. bhttps://doi.org/10.1093/jxb/err256.

Wolf, K., Kolar, J., Witters, E., van Dongen, W., van Onckelen, H., Macháčková, I. (2001). Daily profile of melatonin levels in Chenopodium rubrum L. depends on photoperiod. J. Plant Physiol., 158, 1491–1493.https://doi.org/10.1078/0176-1617-00561.

Xiao, S., Liu, L., Wang, H., Li, D., Bai, Z., Zhang, Y., Sun, H., Zhang, K., Li, C. (2019). Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.). PLoS ONE, 14, e0216575.

Zhang, J.H., Huang, W.D., Liu, Y.P., Pan, Q-H. (2005). Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. J. Integ. Plant Biol., 47, 959–970, https://doi.org/10.1111/j.1744-7909.2005.00109.x.

Zhao, Y., Qi, L.W., Wang, W.M., Saxena, P.K., Liu, C.Z. (2011). Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. J. Pineal Res., 50, 83–88.https://doi.org/10.1111/j.1600-079X.2010.00817.x.

Zhao, Y., Tan, D.X., Lei, Q., Chen, H., Wang, L., Li, Q.T., Gao, Y., Kong, J. (2012). Melatonin and its potential biological functions in the fruits of sweet cherry. J. Pineal Res., 55, 79–88, https://doi.org/10.1111/jpi.12044.

Download

Published
2021-06-30



Gökçen Yakupoglu 
Yozgat Bozok University, Department of Horticulture, Yozgat, Turkey
Şebnem Köklü 
Kahramanmaraş Sütçü Imam University, Faculty of Agriculture, Department of Horticulture, Kahramanmaraş, Turkey
Aygül Karaca 
Kahramanmaraş Sütçü Imam University, Faculty of Agriculture, Department of Horticulture, Kahramanmaraş, Turkey
Elif Düver 
Kahramanmaraş Sütçü Imam University, Faculty of Agriculture, Department of Horticulture, Kahramanmaraş, Turkey
Russel J. Reıter 
Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
Ahmet Korkmaz 
Kahramanmaraş Sütçü Imam University, Faculty of Agriculture, Department of Horticulture, Kahramanmaraş, Turkey



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.