Skip to main navigation menu Skip to main content Skip to site footer

ONLINE FIRST

Articles

Influence of nitrogen-sulfur balance on tomato productivity and quality traits in soilless cultivation

DOI: https://doi.org/10.24326/asphc.2025.5423
Submitted: August 29, 2024
Published: 20.02.2025

Abstract

Nitrogen (N) and sulfur (S) are crucial macronutrient elements for physiological and biochemical processes in tomato plants. However, synergistic effects of lowering N and increasing S application on tomato yield and quality have not been documented. The effect of four N/S balances: 50.00, 9.20, 4.66 and 2.92, prepared by varying the concentration of N and S, were evaluated in tomatoes grown in soilless medium (peat + perlite). The experiment was conducted in a completely randomized design with three replicates. The results of the study showed that the optimal N/S balance in the nutrient solution differed depending on the properties investigated. The N/S balance of 9.20 resulted in the highest overall fruit yield, average fruit weight, fruit size and diameter. Moreover, the N/S balances required in the nutrient solution for the highest lycopene content (7.69 mg 100 g−1 fresh weight) and vitamin C content (20.63 mg 100 g−1 fresh weight) in tomato fruits were 50.00 and 9.20, respectively. It was found that the N/S balance above or below 9.20 had negative effects on yield and yield components as well as on some biophysical quality characteristics of the fruit. However, the N/S balance had no influence on the number of fruits, the firmness and shape index and the pH value of the fruits. Therefore, lowering N and increasing S application to the balance of 9.20 would have great potential to enhance the synergistic effect on the productivity and quality of tomato cultivation.

References

  1. Abdalla, M.A., Meschede, C.A.C., Mühling, K.H. (2020). Selenium foliar application alters patterns of glucosinolate hydrolysis products of pak choi Brassica rapa L. var. Chinensis. Sci. Hortic., 273, 109614. https://doi.org/10.1016/j.scienta.2020.109614
  2. Albornoz, F. (2016). Crop responses to nitrogen overfertilization: A review. Sci. Hortic., 205, 79–83. https://doi.org/10.1016/j.scienta.2016.04.026
  3. Alenazi, M.M., Shafiq, M., Alsadon, A.A., Alhelal, I.M., Alhamdan, A.M., Solieman, T.H.I., Ibrahim, A.A., Shady, M.R., Al-Selwey, W.A. (2020). Improved functional and nutritional properties of tomato fruit during cold storage. Saudi J. Biol. Sci., 27(6), 1467–1474. https://doi.org/10.1016/j.sjbs.2020.03.026
  4. Alpaslan, M., Güneş, A., Inal, A. (1998). Deneme Tekniği [Trial Technique]. Ankara Üniversitesi Yayın No: 1501, Ziraat Fakültesi Ders Kitabı, 455.
  5. Aluko, O.O., Kant, S., Adedire, O.M., Li, C., Yuan, G., Liu, H., Wang, Q. (2023). Unlocking the potentials of nitrate transporters at improving plant nitrogen use efficiency. Front. Plant Sci., 14, 1074839. https://doi.org/10.3389/fpls.2023.1074839
  6. Alvarado-Camarillo, D., Castillo-González, A.M., ValdezAguilar, L.A., García-Santiago, J.C. (2018). Balance and concentration of nitrogen and potassium affect growth and nutrient status in soilless cultivated lisianthus. Acta Agric. Scand. Sect. B Soil Plant Sci., 68(6), 496–504. https://doi.org/10.1080/09064710.2018.1433873
  7. AOAC. (1990). Association of Official Analytical Chemists, Official Methods of Analysis (13th ed.). AOAC. Bénard, C., Gautier, H., Bourgaud, F., Grasselly, D., Navez, B., Caris-Veyrat, C., Weiss, M., Génard, M. (2009). Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. J. Agric. Food Chem., 57(10), 4112–4123. https://doi.org/10.1021/jf8036374
  8. Bian, Z., Wang, Y., Zhang, X., Li, T., Grundy, S., Yang, Q., Cheng, R. (2020). A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments. Foods, 9(6), 732. https://doi.org/10.3390/foods9060732
  9. Cai, S., Zheng, B., Zhao, Z., Zheng, Z., Yang, N., Zhai, B. (2023). Precision nitrogen fertilizer and irrigation management for apple cultivation based on a multilevel comprehensive evaluation method of yield, quality, and profit indices. Water, 15(3), 468. https://doi.org/10.3390/w15030468
  10. Cámara-Zapata, J.M., Brotons-Martínez, J.M., Simón-Grao, S., Martinez-Nicolás, J.J., García-Sánchez, F. (2019). Cost–benefit analysis of tomato in soilless culture systems with saline water under greenhouse conditions. J. Sci. Food Agric., 99, 5842–5851. https://doi.org/10.1002/jsfa.9857
  11. Carciochi, W.D., Reussi Calvo, N.I., Wyngaard, N., Divito, G.A., Eyherabide, M., Echeverría, H.E. (2019). Prognosis and diagnosis of sulfur status in maize by plant analysis. Eur. J. Agron., 108, 1–10. https://doi.org/10.1016/j.eja.2019.04.008
  12. Cataldo, D.A., Haroon, M., Schrader, L.E., Youngs, V.L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal., 6(1), 71–80. https://doi.org/10.1080/00103627509366547
  13. Cheng, M., Wang, H., Fan, J., Xiang, Y., Tang, Z., Pei, S., Zeng, H., Zhang, C., Dai, Y., Li, Z., Zou, Y., Zhang, F. (2021). Effects of nitrogen supply on tomato yield, water use efficiency and fruit quality: A global meta-analysis. Sci. Hortic., 290, 110553. https://doi.org/10.1016/j.scienta.2021.110553
  14. Çakmakçı, R., Salık, M.A., Çakmakçı, S. (2023). Assessment and principles of environmentally sustainable food and agriculture systems. Agriculture, 13(5), 1073. https://doi.org/10.3390/agriculture13051073
  15. Dasgan, H.Y., Aksu, K.S., Zikaria, K., Gruda, N.S. (2024). Biostimulants enhance the nutritional quality of soilless greenhouse tomatoes. Plants, 13(18), 2587. https://doi.org/10.3390/plants13182587
  16. Du, Y., Cao, H., Liu, S., Gu, X., Cao, Y. (2017). Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. J. Integr. Agric., 16, 1153–1161. https://doi.org/10.1016/2095-3119(16)61371-0
  17. Duma, M., Alsina, I., Dubova, L., Erdberga I. (2015). Chemical composition of tomatoes depending on the stage of ripening. Chem. Technol., 66(1), 24–28. https://doi.org/10.5755/j01.ct.66.1.12053
  18. Duncan, E.G., O’Sullivan, C.A., Roper, M.M., Biggs, J.S., Peoples, M.B. (2018). Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat. Review. Field Crops Res., 226, 56–65. https://doi.org/10.1016/j.fcr.2018.07.010
  19. FAOSTAT (2020). Crops and livestock products. Available: https://www.fao.org/faostat/en/#data/QCL [date of access: 1.08.2024].
  20. Feng, X., Xu, Y., Liu, D., Peng, L., Dong, J., Yao, S., Feng, Y., Feng, Z., Li, F., Hu, B. (2020). Effects of organic cultivation pattern on tomato production: plant growth characteristics, quality, disease resistance, and soil physical and chemical properties. Acta Sci. Pol. Hortorum Cultus, 19(1), 71–84. https://doi.org/10.24326/asphc.2020.1.7
  21. Ferysiuk, K., Wójciak, K.M. (2020). Reduction of nitrite in meat products through the application of various plantbased ingredients. Antioxidants, 9(8), 711. https://doi.org/10.3390/antiox9080711
  22. Fish, W.W., Perkins-Veazie, P., Collins, J.K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Compos. Anal., 15(3), 309–317. https://doi.org/10.1006/jfca.2002.1069
  23. Frías-Moreno, M.N., Espino-Díaz, M., Dávila-Aviña, J., Gonzalez-Aguilar, G.A., Ayala-Zavala, J.F., Molina-Corral, F.J., ParraQuezada, R.A., Orozco, G.I.O. (2020). Preharvest nitrogen application affects quality and antioxidant status of two tomato cultivars. Bragantia, 79(1), 134–144. https://doi.org/10.1590/1678-4499.20190247
  24. Fussy, A., Papenbrock, J. (2022). An overview of soil and soilless cultivation techniques—chances, challenges and the neglected question of sustainability. Plants, 11(9), 1153. https://doi.org/10.3390/plants11091153
  25. Gigolashvili, T., Kopriva, S. (2014). Transporters in plant sulfur metabolism. Front. Plant Sci., 5, 442. https://doi.org/10.3389/fpls.2014.00442
  26. Głowacka, A., Jariene, E., Flis-Olszewska, E., Kiełtyka-Dadasiewicz, A. (2023). The effect of nitrogen and sulphur application on soybean productivity traits in temperate climates conditions. Agronomy, 13, 780. https://doi.org/10.3390/agronomy13030780
  27. Gonçalves, D.C., Morgado, C.M.A., de Oliveira Aguiar, F.C., Silva, E.P., de Carvalho Correa, G., dos Reis Nascimento, A., Carlos, R., Junior, C.M. (2020). Postharvest behavior and lycopene content of tomatoes at different harvest times. Acta Sci. Technol., 42(1), e48403. https://doi.org/10.4025/actascitechnol.v42i1.48403
  28. Grasso, R., Peña-Fleitas, M.T., de Souza, R., Rodríguez, A., Thompson, R.B., Gallardo, M., Padilla, F.M. (2022). Nitrogen effect on fruit quality and yield of muskmelon and sweet pepper cultivars. Agronomy, 12(9), 2230. https://doi.org/10.3390/agronomy12092230
  29. Gupta, E., Mishra, P., Singh, P., Mishra, N. (2024). Evidence and prospects of lycopene as powerful red superfood: Modern approach to food science. Curr. Tradit. Med., 10(3), 50–60. https://doi.org/10.2174/2215083810666230417093938
  30. Iqbal, A., Qiang, D., Alamzeb, M., Xiangru, W., Huiping, G., Hengheng, Z., Nianchang, P., Xiling, Z., Meizhen, S. (2020). Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency. J. Sci. Food Agric., 100(3), 904–914. https://doi.org/10.1002/jsfa.10085
  31. Janzen, H.H., Bettany, J.R. (1984). Sulfur nutrition of rapeseed: I. Influence of fertilizer nitrogen and sulfur rates. Soil Sci. Soc. Am. J., 48(1), 100–107. https://doi.org/10.2136/sssaj1984.03615995004800010019x
  32. Jobe, T.O., Zenzen, I., Rahimzadeh Karvansara, P., Kopriva, S. (2019). Integration of sulfate assimilation with carbon and nitrogen metabolism in transition from C3 to C4 photosynthesis. J. Exp. Bot., 70, 4211–4221. https://doi.org/10.1093/jxb/erz250
  33. Kaniszewski, S., Kosson, R., Grzegorzewska, M., Kowalski, A., Badełek, E., Szwejda-Grzybowska, J., Tuccio, L., Agati, G. (2019). Yield and quality traits of field grown tomato as affected by cultivar and nitrogen application rate. J. Agric. Sci. Technol., 21(3), 683–697.
  34. Khalili, A., Khalofah, A., Ramesh, A., Sharma, M.P. (2024). Temporal synchronization of nitrogen and sulfur fertilization: Impacts on nutrient uptake, use efficiency, productivity, and relationships with other micronutrients in soybean. Agronomy, 14(3), 570. https://doi.org/10.3390/agronomy14030570
  35. Khan, U.M., Sevindik, M., Zarrabi, A., Nami, M., Ozdemir, B., Kaplan, D.N., Selamoglu, Z., Hasan, M., Kumar, M., Alshehri, M.M., Sharifi-Rad, J. (2021). Lycopene: Food sources, biological activities, and human health benefits. Oxid. Med. Cell. Longev., 2713511. https://doi.org/10.1155/2021/2713511
  36. Kopriva, S., Malagoli, M., Takahashi, H. (2019). Sulfur nutrition. Impacts on plant development, metabolism, and stress responses. J. Exp. Bot., 70(16), 4069–4073. https://doi.org/10.1093/jxb/erz319
  37. Korkmaz, A., Karagöl, A., Akınoğlu, G., Korkmaz, H. (2018). The effects of silicon on nutrient levels and yields of tomatoes under saline stress in artificial medium culture. J. Plant Nutr., 41(1), 123–135. https://doi.org/10.1080/01904167.2017.1381975
  38. Kumar, S., Wani, J.A., Lone, B.A., Fayaz, A., Singh, P., Qayoom, S., Dar, Z.A., Ahmed, N. (2017). Effect of phosphorus and sulphur on nutrient and amino acids content of soybean (Glycine max L. Merill) under ‘Alfisols’. J. Exp. Agric. Int., 16(4), 1–7. https://doi.org/10.9734/JEAI/2017/32742
  39. Kurina, A.B., Solovieva, A.E., Khrapalova, I.A., Artemyeva, A.M. (2021). Биохимический состав плодов томата различной окраски [Biochemical composition of tomato fruits of various colors]. Vavilovskii Zh. Genet. Selektsii, 25(5), 514–527. In Russian. https://doi.org/10.18699/VJ21.058
  40. Li, Q., Luo, S., Zhang, L., Feng, Q., Song, L., Sapkota, M., Xuan, S., Wang, Y., Zhao, J., van der Knaap, E., Chen, X., Shen, S. (2023). Molecular and genetic regulations of fleshy fruit shape and lessons from Arabidopsis and rice. Hortic. Res., 10(7). https://doi.org/10.1093/hr/had108
  41. Li, R., Sun, S., Wang, H., Wang, K., Yu, H., Zhou, Z., Xin, P., Chu, J., Zhao, T., Wang, H., Li, J., Cui, X. (2020). FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato. Nat. Commun., 11, 5844. https://doi.org/10.1038/s41467-020-19705-w
  42. Lima, G.P.P., Gómez, H.A.G., Seabra Junior, S., Maraschin, M., Tecchio, M.A., Borges, C.V. (2022). Functional and nutraceutical compounds of tomatoes as affected by agronomic practices, postharvest management, and processing methods: A mini review. Front. Nutr., 9, 868492. https://doi.org/10.3389/fnut.2022.868492
  43. Liu, S., Cui, S., Zhang, X., Wang, Y., Mi, G., Gao, Q. (2020). Synergistic regulation of nitrogen and sulfur on redox balance of maize leaves and amino acids balance of grains. Front. Plant Sci., 11, 576718. https://doi.org/10.3389/fpls.2020.576718
  44. Lu, T., Yu, H., Wang, T., Zhang, T., Shi, C., Jiang, W. (2022). Influence of the electrical conductivity of the nutrient solution in different phenological stages on the growth and yield of cherry tomato. Horticulturae, 8(5), 378. https://doi.org/10.3390/horticulturae8050378
  45. Lucke, T., Walker, C., Beecham, S. (2019). Experimental designs of field-based constructed floating wetland studies: A review. Sci. Total Environ., 660, 199–208. https://doi.org/10.1016/j.scitotenv.2019.01.018
  46. Marschner, P. (2012). Marschner’s mineral nutrition of higher plants (3rd ed.). Academic Press, Elsevier.
  47. Meschede, C.A.C., Abdalla, M.A., Mühling, K.H. (2020). Sulfur but not nitrogen supply increases the ITC/Nitrile ratio in Pak Choi (Brassica rapa subsp. Chinensis (L.) Hanelt). J. Appl. Bot. Food Qual., 93, 95–104. https://doi.org/10.5073/JABFQ.2020.093.012
  48. Nakai, Y., Maruyama-Nakashita, A. (2020). Biosynthesis of sulfur-containing small biomolecules in plants. Int. J. Mol. Sci., 21(10), 3470. https://doi.org/10.3390/ijms21103470
  49. Narayan, O.P., Kumar, P., Yadav, B., Dua, M., Johri, A.K. (2023). Sulfur nutrition and its role in plant growth and development. Plant Signal. Behav., 18(1), 2030082. https://doi.org/10.1080/15592324.2022.2030082
  50. Omotoso, S.O., Akinrinde, E.A. (2013). Effect of nitrogen fertilizer on some growth, yield and fruit quality parameters in pineapple (Ananas comosus L. Merr.) plant at Ado-Ekiti Southwestern, Nigeria. Int. Res. J. Agric. Sci. Soil Sci., 3(1), 11–16.
  51. Padayatt, S.J., Daruwala, R., Wang, Y., Eck, P.K., Song, J., Koh, W.S., Levine, M. (2001). Vitamin C: From molec¬ular actions to optimum intake. In: Handbook of antioxidants. Cadenas, E., Packer L. (eds.). CRC Press, Washington DC, USA, 117–145.
  52. Panno, S., Davino, S., Caruso, A.G., Bertacca, S., Crnogorac, A., Mandić, A., Noris, E., Matić, S. (2021). A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the Mediterranean Basin. Agronomy, 11(11), 2188. https://doi.org/10.3390/agronomy11112188
  53. Parra-Torrejón, B., Cáceres, A., Sánchez, M., Sainz, L., Guzmán, M., Bermúdez-Perez, F.J., Ramírez-Rodríguez, G.B., Delgado-López, J.M. (2023). Multifunctional nanomaterials for biofortification and protection of tomato plants. Environ. Sci. Technol., 57(40), 14950–14960. https://doi.org/10.1021/acs.est.3c02559
  54. Peng, C., Zhang, Z., Li, Y., Zhang, Y., Dong, H., Fang, Y., Han, L.P., Xu, W., Hu, L. (2022). Genetic improvement analysis of nitrogen uptake, utilization, translocation, and distribution in Chinese wheat in Henan Province. Field Crops Res., 277, 108406. https://doi.org/10.1016/j.fcr.2021.108406.
  55. San-Martín-Hernández, C., Gómez-Merino, F.C., Rivera-Vargas, G., Saucedo-Veloz, C., Vaquera-Huerta, H., Trejo-Téllez, L.I. (2022). La calidad del fruto de tomate entre racimos es afectada diferencialmente por el suministro de nitrógeno y potasio [Tomato fruit quality between clusters is differentially affected by nitrogen and potassium supply]. Rev. Fitotec. Mex., 45(2), 183–192. https://doi.org/10.35196/rfm.2022.2.183
  56. Scarano, A., Olivieri, F., Gerardi, C., Liso, M., Chiesa, M., Chieppa, M., Frusciante, L., Barone, A., Santino, A., Rigano, M.M. (2020). Selection of tomato landraces with high fruit yield and nutritional quality under elevated temperatures. J. Sci. Food Agric., 100(6), 2791– 2799. https://doi.org/10.1002/jsfa.10312
  57. See, X.Z., Yeo, W.S., Saptoro, A. (2024). A comprehensive review and recent advances of vitamin C: Overview, functions, sources, applications, market survey and processes. Chem. Eng. Res. Des., 206, 108–129. https://doi.org/10.1016/j.cherd.2024.04.048
  58. Shah, K.K., Modi, B., Lamsal, B., Shrestha, S., Aryal, S.P. (2021). Bioactive compounds in tomato and their roles in disease prevention. Fundam. Appl. Agric., 6(2), 210– 224. https://doi.org/10.5455/faa.136276
  59. Shewangizaw, B., Kassie, K., Assefa S., Lemma, G., Gete, Y., Getu, D., Getanh, L., Shegaw, G., Manaze, G. (2024).Tomato yield, and water use efficiency as affected by nitrogen rate and irrigation regime in the central low lands of Ethiopia. Sci. Rep., 14(1), 13307. https://doi.org/10.1038/s41598-024-62884-5.
  60. Shi, Y., Li, B.-J., Grierson, D., Chen, K.-S. (2023). Insights into cell wall changes during fruit softening from transgenic and naturally occurring mutants. Plant Physiol., 192(3), 1671–1683. https://doi.org/10.1093/plphys/kiad128
  61. Siueia, M. Jr., de Souza Silva, M.L., Trevizam, A.R., Faquin, V., da Silva, D.V. (2020). Postharvest quality of tomato as affected by nitrogen and sulfur interaction. Acta Agron., 69(2), 130–135. https://doi.org/10.15446/acag.v69n2.73691
  62. Souri, M.K., Dehnavard, S. (2018). Tomato plant growth, leaf nutrient concentrations and fruit quality under nitrogen foliar applications. Adv. Hortic. Sci., 32(1), 41–47. https://doi.org/10.13128/ahs-21894
  63. Sutradhar, A.K., Kaiser, D.E., Fernández, F.G. (2017). Does total nitrogen/sulfur ratio predict nitrogen or sulfur re¬quirement for corn? Soil Sci. Soc. Am. J., 81(3), 564– 577. https://doi.org/10.2136/sssaj2016.10.0352
  64. Tüzel, Y., Gül, A., Tüzel, I.H., Öztekin, G.B. (2019). Different soilless culture systems and their management. J. Agric. Food Environ. Sci., 73(3), 7–12. https://doi.org/10.55302/JAFES19733007t
  65. Tzortzakis, N., Nicola, S., Savvas, D., Voogt, W. (2020). Editorial. Soilless cultivation through an intensive crop production scheme. Management strategies, challenges and future directions. Front. Plant Sci., 11, 363. https://doi.org/10.3389/fpls.2020.00363
  66. Uddin, R., Thakur, M.U., Uddin, M.Z., Islam, G.M.R. (2021). Study of nitrate levels in fruits and vegetables to assess the potential health risks in Bangladesh. Sci. Rep., 11, 4704. https://doi.org/10.1038/s41598-021-84032-z
  67. Wu, X., Yu, L., Pehrsson, P.R. (2022). Are processed tomato products as nutritious as fresh tomatoes? Scoping review on the effects of industrial processing on nutrients and bioactive compounds in tomatoes. Adv. Nutr., 13(1), 138–151. https://doi.org/10.1093/advances/nmab109
  68. Zenda, T., Liu, S., Dong, A., Duan, H. (2021). Revisiting sulphur – the once neglected nutrient: it’s roles in plant growth, metabolism, stress tolerance and crop production. Agriculture, 11(7), 626. https://doi.org/10.3390/agriculture11070626
  69. Zhang, J., Liu, S., Zhu, X., Chang, Y., Wang, C., Ma, N., Wang, J., Zhang, X., Lyu, J., Xie, J. A. (2023a). Compre¬hensive evaluation of tomato fruit quality and identifica¬tion of volatile compounds. Plants, 12(16), 2947. https://doi.org/10.3390/plants12162947
  70. Zhang, L., Wang, P., Sun, X., Chen, F., Lai, S., Yang, H. (2020). Calcium permeation property and firmness change of cherry tomatoes under ultrasound combined with calcium lactate treatment. Ultrason. Sonochem., 60, 104784. https://doi.org/10.1016/j.ultsonch.2019.104784
  71. Zhang, L., Zhang, F., Wang, Y., Ma, X., Shen, Y.P., Wang, X.Z., Yang, H.Y., Zhang, W., Lakshmanan, P., Hu, Y.C., Xu, J.L., Chen, X.P., Deng, Y. (2023b). Physiological and metabolomic analysis reveals maturity stage-dependent nitrogen regulation of vitamin C content in pepper fruit. Front. Plant Sci., 13, 1049785. https://doi.org/10.3389/fpls.2022.1049785
  72. Zhou, J., Zhang, H., Huang, Y., Jiao, S., Zheng, X., Lu, W., Jiang, W., Bai, X. (2024). Impact of sulfur deficiency and excess on the growth and development of soybean seedlings. Int. J. Mol. Sci., 25(20), 11253. https://doi.org/10.3390/ijms252011253

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.