Abstract
Nitrogen (N) and sulfur (S) are crucial macronutrient elements for physiological and biochemical processes in tomato plants. However, synergistic effects of lowering N and increasing S application on tomato yield and quality have not been documented. The effect of four N/S balances: 50.00, 9.20, 4.66 and 2.92, prepared by varying the concentration of N and S, were evaluated in tomatoes grown in soilless medium (peat + perlite). The experiment was conducted in a completely randomized design with three replicates. The results of the study showed that the optimal N/S balance in the nutrient solution differed depending on the properties investigated. The N/S balance of 9.20 resulted in the highest overall fruit yield, average fruit weight, fruit size and diameter. Moreover, the N/S balances required in the nutrient solution for the highest lycopene content (7.69 mg 100 g−1 fresh weight) and vitamin C content (20.63 mg 100 g−1 fresh weight) in tomato fruits were 50.00 and 9.20, respectively. It was found that the N/S balance above or below 9.20 had negative effects on yield and yield components as well as on some biophysical quality characteristics of the fruit. However, the N/S balance had no influence on the number of fruits, the firmness and shape index and the pH value of the fruits. Therefore, lowering N and increasing S application to the balance of 9.20 would have great potential to enhance the synergistic effect on the productivity and quality of tomato cultivation.
References
- Abdalla, M.A., Meschede, C.A.C., Mühling, K.H. (2020). Selenium foliar application alters patterns of glucosinolate hydrolysis products of pak choi Brassica rapa L. var. Chinensis. Sci. Hortic., 273, 109614. https://doi.org/10.1016/j.scienta.2020.109614
DOI: https://doi.org/10.1016/j.scienta.2020.109614
- Albornoz, F. (2016). Crop responses to nitrogen overfertilization: A review. Sci. Hortic., 205, 79–83. https://doi.org/10.1016/j.scienta.2016.04.026
DOI: https://doi.org/10.1016/j.scienta.2016.04.026
- Alenazi, M.M., Shafiq, M., Alsadon, A.A., Alhelal, I.M., Alhamdan, A.M., Solieman, T.H.I., Ibrahim, A.A., Shady, M.R., Al-Selwey, W.A. (2020). Improved functional and nutritional properties of tomato fruit during cold storage. Saudi J. Biol. Sci., 27(6), 1467–1474. https://doi.org/10.1016/j.sjbs.2020.03.026
DOI: https://doi.org/10.1016/j.sjbs.2020.03.026
- Alpaslan, M., Güneş, A., Inal, A. (1998). Deneme Tekniği [Trial Technique]. Ankara Üniversitesi Yayın No: 1501, Ziraat Fakültesi Ders Kitabı, 455.
- Aluko, O.O., Kant, S., Adedire, O.M., Li, C., Yuan, G., Liu, H., Wang, Q. (2023). Unlocking the potentials of nitrate transporters at improving plant nitrogen use efficiency. Front. Plant Sci., 14, 1074839. https://doi.org/10.3389/fpls.2023.1074839
DOI: https://doi.org/10.3389/fpls.2023.1074839
- Alvarado-Camarillo, D., Castillo-González, A.M., ValdezAguilar, L.A., García-Santiago, J.C. (2018). Balance and concentration of nitrogen and potassium affect growth and nutrient status in soilless cultivated lisianthus. Acta Agric. Scand. Sect. B Soil Plant Sci., 68(6), 496–504. https://doi.org/10.1080/09064710.2018.1433873
DOI: https://doi.org/10.1080/09064710.2018.1433873
- AOAC. (1990). Association of Official Analytical Chemists, Official Methods of Analysis (13th ed.). AOAC. Bénard, C., Gautier, H., Bourgaud, F., Grasselly, D., Navez, B., Caris-Veyrat, C., Weiss, M., Génard, M. (2009). Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. J. Agric. Food Chem., 57(10), 4112–4123. https://doi.org/10.1021/jf8036374
DOI: https://doi.org/10.1021/jf8036374
- Bian, Z., Wang, Y., Zhang, X., Li, T., Grundy, S., Yang, Q., Cheng, R. (2020). A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments. Foods, 9(6), 732. https://doi.org/10.3390/foods9060732
DOI: https://doi.org/10.3390/foods9060732
- Cai, S., Zheng, B., Zhao, Z., Zheng, Z., Yang, N., Zhai, B. (2023). Precision nitrogen fertilizer and irrigation management for apple cultivation based on a multilevel comprehensive evaluation method of yield, quality, and profit indices. Water, 15(3), 468. https://doi.org/10.3390/w15030468
DOI: https://doi.org/10.3390/w15030468
- Cámara-Zapata, J.M., Brotons-Martínez, J.M., Simón-Grao, S., Martinez-Nicolás, J.J., García-Sánchez, F. (2019). Cost–benefit analysis of tomato in soilless culture systems with saline water under greenhouse conditions. J. Sci. Food Agric., 99, 5842–5851. https://doi.org/10.1002/jsfa.9857
DOI: https://doi.org/10.1002/jsfa.9857
- Carciochi, W.D., Reussi Calvo, N.I., Wyngaard, N., Divito, G.A., Eyherabide, M., Echeverría, H.E. (2019). Prognosis and diagnosis of sulfur status in maize by plant analysis. Eur. J. Agron., 108, 1–10. https://doi.org/10.1016/j.eja.2019.04.008
DOI: https://doi.org/10.1016/j.eja.2019.04.008
- Cataldo, D.A., Haroon, M., Schrader, L.E., Youngs, V.L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal., 6(1), 71–80. https://doi.org/10.1080/00103627509366547
DOI: https://doi.org/10.1080/00103627509366547
- Cheng, M., Wang, H., Fan, J., Xiang, Y., Tang, Z., Pei, S., Zeng, H., Zhang, C., Dai, Y., Li, Z., Zou, Y., Zhang, F. (2021). Effects of nitrogen supply on tomato yield, water use efficiency and fruit quality: A global meta-analysis. Sci. Hortic., 290, 110553. https://doi.org/10.1016/j.scienta.2021.110553
DOI: https://doi.org/10.1016/j.scienta.2021.110553
- Çakmakçı, R., Salık, M.A., Çakmakçı, S. (2023). Assessment and principles of environmentally sustainable food and agriculture systems. Agriculture, 13(5), 1073. https://doi.org/10.3390/agriculture13051073
DOI: https://doi.org/10.3390/agriculture13051073
- Dasgan, H.Y., Aksu, K.S., Zikaria, K., Gruda, N.S. (2024). Biostimulants enhance the nutritional quality of soilless greenhouse tomatoes. Plants, 13(18), 2587. https://doi.org/10.3390/plants13182587
DOI: https://doi.org/10.3390/plants13182587
- Du, Y., Cao, H., Liu, S., Gu, X., Cao, Y. (2017). Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. J. Integr. Agric., 16, 1153–1161. https://doi.org/10.1016/2095-3119(16)61371-0
DOI: https://doi.org/10.1016/S2095-3119(16)61371-0
- Duma, M., Alsina, I., Dubova, L., Erdberga I. (2015). Chemical composition of tomatoes depending on the stage of ripening. Chem. Technol., 66(1), 24–28. https://doi.org/10.5755/j01.ct.66.1.12053
DOI: https://doi.org/10.5755/j01.ct.66.1.12053
- Duncan, E.G., O’Sullivan, C.A., Roper, M.M., Biggs, J.S., Peoples, M.B. (2018). Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat. Review. Field Crops Res., 226, 56–65. https://doi.org/10.1016/j.fcr.2018.07.010
DOI: https://doi.org/10.1016/j.fcr.2018.07.010
- FAOSTAT (2020). Crops and livestock products. Available: https://www.fao.org/faostat/en/#data/QCL [date of access: 1.08.2024].
- Feng, X., Xu, Y., Liu, D., Peng, L., Dong, J., Yao, S., Feng, Y., Feng, Z., Li, F., Hu, B. (2020). Effects of organic cultivation pattern on tomato production: plant growth characteristics, quality, disease resistance, and soil physical and chemical properties. Acta Sci. Pol. Hortorum Cultus, 19(1), 71–84. https://doi.org/10.24326/asphc.2020.1.7
DOI: https://doi.org/10.24326/asphc.2020.1.7
- Ferysiuk, K., Wójciak, K.M. (2020). Reduction of nitrite in meat products through the application of various plantbased ingredients. Antioxidants, 9(8), 711. https://doi.org/10.3390/antiox9080711
DOI: https://doi.org/10.3390/antiox9080711
- Fish, W.W., Perkins-Veazie, P., Collins, J.K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Compos. Anal., 15(3), 309–317. https://doi.org/10.1006/jfca.2002.1069
DOI: https://doi.org/10.1006/jfca.2002.1069
- Frías-Moreno, M.N., Espino-Díaz, M., Dávila-Aviña, J., Gonzalez-Aguilar, G.A., Ayala-Zavala, J.F., Molina-Corral, F.J., ParraQuezada, R.A., Orozco, G.I.O. (2020). Preharvest nitrogen application affects quality and antioxidant status of two tomato cultivars. Bragantia, 79(1), 134–144. https://doi.org/10.1590/1678-4499.20190247
DOI: https://doi.org/10.1590/1678-4499.20190247
- Fussy, A., Papenbrock, J. (2022). An overview of soil and soilless cultivation techniques—chances, challenges and the neglected question of sustainability. Plants, 11(9), 1153. https://doi.org/10.3390/plants11091153
DOI: https://doi.org/10.3390/plants11091153
- Gigolashvili, T., Kopriva, S. (2014). Transporters in plant sulfur metabolism. Front. Plant Sci., 5, 442. https://doi.org/10.3389/fpls.2014.00442
DOI: https://doi.org/10.3389/fpls.2014.00442
- Głowacka, A., Jariene, E., Flis-Olszewska, E., Kiełtyka-Dadasiewicz, A. (2023). The effect of nitrogen and sulphur application on soybean productivity traits in temperate climates conditions. Agronomy, 13, 780. https://doi.org/10.3390/agronomy13030780
DOI: https://doi.org/10.3390/agronomy13030780
- Gonçalves, D.C., Morgado, C.M.A., de Oliveira Aguiar, F.C., Silva, E.P., de Carvalho Correa, G., dos Reis Nascimento, A., Carlos, R., Junior, C.M. (2020). Postharvest behavior and lycopene content of tomatoes at different harvest times. Acta Sci. Technol., 42(1), e48403. https://doi.org/10.4025/actascitechnol.v42i1.48403
DOI: https://doi.org/10.4025/actascitechnol.v42i1.48403
- Grasso, R., Peña-Fleitas, M.T., de Souza, R., Rodríguez, A., Thompson, R.B., Gallardo, M., Padilla, F.M. (2022). Nitrogen effect on fruit quality and yield of muskmelon and sweet pepper cultivars. Agronomy, 12(9), 2230. https://doi.org/10.3390/agronomy12092230
DOI: https://doi.org/10.3390/agronomy12092230
- Gupta, E., Mishra, P., Singh, P., Mishra, N. (2024). Evidence and prospects of lycopene as powerful red superfood: Modern approach to food science. Curr. Tradit. Med., 10(3), 50–60. https://doi.org/10.2174/2215083810666230417093938
DOI: https://doi.org/10.2174/2215083810666230417093938
- Iqbal, A., Qiang, D., Alamzeb, M., Xiangru, W., Huiping, G., Hengheng, Z., Nianchang, P., Xiling, Z., Meizhen, S. (2020). Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency. J. Sci. Food Agric., 100(3), 904–914. https://doi.org/10.1002/jsfa.10085
DOI: https://doi.org/10.1002/jsfa.10085
- Janzen, H.H., Bettany, J.R. (1984). Sulfur nutrition of rapeseed: I. Influence of fertilizer nitrogen and sulfur rates. Soil Sci. Soc. Am. J., 48(1), 100–107. https://doi.org/10.2136/sssaj1984.03615995004800010019x
DOI: https://doi.org/10.2136/sssaj1984.03615995004800010019x
- Jobe, T.O., Zenzen, I., Rahimzadeh Karvansara, P., Kopriva, S. (2019). Integration of sulfate assimilation with carbon and nitrogen metabolism in transition from C3 to C4 photosynthesis. J. Exp. Bot., 70, 4211–4221. https://doi.org/10.1093/jxb/erz250
DOI: https://doi.org/10.1093/jxb/erz250
- Kaniszewski, S., Kosson, R., Grzegorzewska, M., Kowalski, A., Badełek, E., Szwejda-Grzybowska, J., Tuccio, L., Agati, G. (2019). Yield and quality traits of field grown tomato as affected by cultivar and nitrogen application rate. J. Agric. Sci. Technol., 21(3), 683–697.
- Khalili, A., Khalofah, A., Ramesh, A., Sharma, M.P. (2024). Temporal synchronization of nitrogen and sulfur fertilization: Impacts on nutrient uptake, use efficiency, productivity, and relationships with other micronutrients in soybean. Agronomy, 14(3), 570. https://doi.org/10.3390/agronomy14030570
DOI: https://doi.org/10.3390/agronomy14030570
- Khan, U.M., Sevindik, M., Zarrabi, A., Nami, M., Ozdemir, B., Kaplan, D.N., Selamoglu, Z., Hasan, M., Kumar, M., Alshehri, M.M., Sharifi-Rad, J. (2021). Lycopene: Food sources, biological activities, and human health benefits. Oxid. Med. Cell. Longev., 2713511. https://doi.org/10.1155/2021/2713511
DOI: https://doi.org/10.1155/2021/2713511
- Kopriva, S., Malagoli, M., Takahashi, H. (2019). Sulfur nutrition. Impacts on plant development, metabolism, and stress responses. J. Exp. Bot., 70(16), 4069–4073. https://doi.org/10.1093/jxb/erz319
DOI: https://doi.org/10.1093/jxb/erz319
- Korkmaz, A., Karagöl, A., Akınoğlu, G., Korkmaz, H. (2018). The effects of silicon on nutrient levels and yields of tomatoes under saline stress in artificial medium culture. J. Plant Nutr., 41(1), 123–135. https://doi.org/10.1080/01904167.2017.1381975
DOI: https://doi.org/10.1080/01904167.2017.1381975
- Kumar, S., Wani, J.A., Lone, B.A., Fayaz, A., Singh, P., Qayoom, S., Dar, Z.A., Ahmed, N. (2017). Effect of phosphorus and sulphur on nutrient and amino acids content of soybean (Glycine max L. Merill) under ‘Alfisols’. J. Exp. Agric. Int., 16(4), 1–7. https://doi.org/10.9734/JEAI/2017/32742
DOI: https://doi.org/10.9734/JEAI/2017/32742
- Kurina, A.B., Solovieva, A.E., Khrapalova, I.A., Artemyeva, A.M. (2021). Биохимический состав плодов томата различной окраски [Biochemical composition of tomato fruits of various colors]. Vavilovskii Zh. Genet. Selektsii, 25(5), 514–527. In Russian. https://doi.org/10.18699/VJ21.058
DOI: https://doi.org/10.18699/VJ21.058
- Li, Q., Luo, S., Zhang, L., Feng, Q., Song, L., Sapkota, M., Xuan, S., Wang, Y., Zhao, J., van der Knaap, E., Chen, X., Shen, S. (2023). Molecular and genetic regulations of fleshy fruit shape and lessons from Arabidopsis and rice. Hortic. Res., 10(7). https://doi.org/10.1093/hr/had108
DOI: https://doi.org/10.1093/hr/uhad108
- Li, R., Sun, S., Wang, H., Wang, K., Yu, H., Zhou, Z., Xin, P., Chu, J., Zhao, T., Wang, H., Li, J., Cui, X. (2020). FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato. Nat. Commun., 11, 5844. https://doi.org/10.1038/s41467-020-19705-w
DOI: https://doi.org/10.1038/s41467-020-19705-w
- Lima, G.P.P., Gómez, H.A.G., Seabra Junior, S., Maraschin, M., Tecchio, M.A., Borges, C.V. (2022). Functional and nutraceutical compounds of tomatoes as affected by agronomic practices, postharvest management, and processing methods: A mini review. Front. Nutr., 9, 868492. https://doi.org/10.3389/fnut.2022.868492
DOI: https://doi.org/10.3389/fnut.2022.868492
- Liu, S., Cui, S., Zhang, X., Wang, Y., Mi, G., Gao, Q. (2020). Synergistic regulation of nitrogen and sulfur on redox balance of maize leaves and amino acids balance of grains. Front. Plant Sci., 11, 576718. https://doi.org/10.3389/fpls.2020.576718
DOI: https://doi.org/10.3389/fpls.2020.576718
- Lu, T., Yu, H., Wang, T., Zhang, T., Shi, C., Jiang, W. (2022). Influence of the electrical conductivity of the nutrient solution in different phenological stages on the growth and yield of cherry tomato. Horticulturae, 8(5), 378. https://doi.org/10.3390/horticulturae8050378
DOI: https://doi.org/10.3390/horticulturae8050378
- Lucke, T., Walker, C., Beecham, S. (2019). Experimental designs of field-based constructed floating wetland studies: A review. Sci. Total Environ., 660, 199–208. https://doi.org/10.1016/j.scitotenv.2019.01.018
DOI: https://doi.org/10.1016/j.scitotenv.2019.01.018
- Marschner, P. (2012). Marschner’s mineral nutrition of higher plants (3rd ed.). Academic Press, Elsevier.
- Meschede, C.A.C., Abdalla, M.A., Mühling, K.H. (2020). Sulfur but not nitrogen supply increases the ITC/Nitrile ratio in Pak Choi (Brassica rapa subsp. Chinensis (L.) Hanelt). J. Appl. Bot. Food Qual., 93, 95–104. https://doi.org/10.5073/JABFQ.2020.093.012
- Nakai, Y., Maruyama-Nakashita, A. (2020). Biosynthesis of sulfur-containing small biomolecules in plants. Int. J. Mol. Sci., 21(10), 3470. https://doi.org/10.3390/ijms21103470
DOI: https://doi.org/10.3390/ijms21103470
- Narayan, O.P., Kumar, P., Yadav, B., Dua, M., Johri, A.K. (2023). Sulfur nutrition and its role in plant growth and development. Plant Signal. Behav., 18(1), 2030082. https://doi.org/10.1080/15592324.2022.2030082
DOI: https://doi.org/10.1080/15592324.2022.2030082
- Omotoso, S.O., Akinrinde, E.A. (2013). Effect of nitrogen fertilizer on some growth, yield and fruit quality parameters in pineapple (Ananas comosus L. Merr.) plant at Ado-Ekiti Southwestern, Nigeria. Int. Res. J. Agric. Sci. Soil Sci., 3(1), 11–16.
- Padayatt, S.J., Daruwala, R., Wang, Y., Eck, P.K., Song, J., Koh, W.S., Levine, M. (2001). Vitamin C: From molec¬ular actions to optimum intake. In: Handbook of antioxidants. Cadenas, E., Packer L. (eds.). CRC Press, Washington DC, USA, 117–145.
DOI: https://doi.org/10.1201/9780203904046.pt3
- Panno, S., Davino, S., Caruso, A.G., Bertacca, S., Crnogorac, A., Mandić, A., Noris, E., Matić, S. (2021). A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the Mediterranean Basin. Agronomy, 11(11), 2188. https://doi.org/10.3390/agronomy11112188
DOI: https://doi.org/10.3390/agronomy11112188
- Parra-Torrejón, B., Cáceres, A., Sánchez, M., Sainz, L., Guzmán, M., Bermúdez-Perez, F.J., Ramírez-Rodríguez, G.B., Delgado-López, J.M. (2023). Multifunctional nanomaterials for biofortification and protection of tomato plants. Environ. Sci. Technol., 57(40), 14950–14960. https://doi.org/10.1021/acs.est.3c02559
DOI: https://doi.org/10.1021/acs.est.3c02559
- Peng, C., Zhang, Z., Li, Y., Zhang, Y., Dong, H., Fang, Y., Han, L.P., Xu, W., Hu, L. (2022). Genetic improvement analysis of nitrogen uptake, utilization, translocation, and distribution in Chinese wheat in Henan Province. Field Crops Res., 277, 108406. https://doi.org/10.1016/j.fcr.2021.108406.
DOI: https://doi.org/10.1016/j.fcr.2021.108406
- San-Martín-Hernández, C., Gómez-Merino, F.C., Rivera-Vargas, G., Saucedo-Veloz, C., Vaquera-Huerta, H., Trejo-Téllez, L.I. (2022). La calidad del fruto de tomate entre racimos es afectada diferencialmente por el suministro de nitrógeno y potasio [Tomato fruit quality between clusters is differentially affected by nitrogen and potassium supply]. Rev. Fitotec. Mex., 45(2), 183–192. https://doi.org/10.35196/rfm.2022.2.183
DOI: https://doi.org/10.35196/rfm.2022.2.183
- Scarano, A., Olivieri, F., Gerardi, C., Liso, M., Chiesa, M., Chieppa, M., Frusciante, L., Barone, A., Santino, A., Rigano, M.M. (2020). Selection of tomato landraces with high fruit yield and nutritional quality under elevated temperatures. J. Sci. Food Agric., 100(6), 2791– 2799. https://doi.org/10.1002/jsfa.10312
DOI: https://doi.org/10.1002/jsfa.10312
- See, X.Z., Yeo, W.S., Saptoro, A. (2024). A comprehensive review and recent advances of vitamin C: Overview, functions, sources, applications, market survey and processes. Chem. Eng. Res. Des., 206, 108–129. https://doi.org/10.1016/j.cherd.2024.04.048
DOI: https://doi.org/10.1016/j.cherd.2024.04.048
- Shah, K.K., Modi, B., Lamsal, B., Shrestha, S., Aryal, S.P. (2021). Bioactive compounds in tomato and their roles in disease prevention. Fundam. Appl. Agric., 6(2), 210– 224. https://doi.org/10.5455/faa.136276
DOI: https://doi.org/10.5455/faa.136276
- Shewangizaw, B., Kassie, K., Assefa S., Lemma, G., Gete, Y., Getu, D., Getanh, L., Shegaw, G., Manaze, G. (2024).Tomato yield, and water use efficiency as affected by nitrogen rate and irrigation regime in the central low lands of Ethiopia. Sci. Rep., 14(1), 13307. https://doi.org/10.1038/s41598-024-62884-5.
DOI: https://doi.org/10.1038/s41598-024-62884-5
- Shi, Y., Li, B.-J., Grierson, D., Chen, K.-S. (2023). Insights into cell wall changes during fruit softening from transgenic and naturally occurring mutants. Plant Physiol., 192(3), 1671–1683. https://doi.org/10.1093/plphys/kiad128
DOI: https://doi.org/10.1093/plphys/kiad128
- Siueia, M. Jr., de Souza Silva, M.L., Trevizam, A.R., Faquin, V., da Silva, D.V. (2020). Postharvest quality of tomato as affected by nitrogen and sulfur interaction. Acta Agron., 69(2), 130–135. https://doi.org/10.15446/acag.v69n2.73691
DOI: https://doi.org/10.15446/acag.v69n2.73691
- Souri, M.K., Dehnavard, S. (2018). Tomato plant growth, leaf nutrient concentrations and fruit quality under nitrogen foliar applications. Adv. Hortic. Sci., 32(1), 41–47. https://doi.org/10.13128/ahs-21894
- Sutradhar, A.K., Kaiser, D.E., Fernández, F.G. (2017). Does total nitrogen/sulfur ratio predict nitrogen or sulfur re¬quirement for corn? Soil Sci. Soc. Am. J., 81(3), 564– 577. https://doi.org/10.2136/sssaj2016.10.0352
DOI: https://doi.org/10.2136/sssaj2016.10.0352
- Tüzel, Y., Gül, A., Tüzel, I.H., Öztekin, G.B. (2019). Different soilless culture systems and their management. J. Agric. Food Environ. Sci., 73(3), 7–12. https://doi.org/10.55302/JAFES19733007t
DOI: https://doi.org/10.55302/JAFES19733007t
- Tzortzakis, N., Nicola, S., Savvas, D., Voogt, W. (2020). Editorial. Soilless cultivation through an intensive crop production scheme. Management strategies, challenges and future directions. Front. Plant Sci., 11, 363. https://doi.org/10.3389/fpls.2020.00363
DOI: https://doi.org/10.3389/fpls.2020.00363
- Uddin, R., Thakur, M.U., Uddin, M.Z., Islam, G.M.R. (2021). Study of nitrate levels in fruits and vegetables to assess the potential health risks in Bangladesh. Sci. Rep., 11, 4704. https://doi.org/10.1038/s41598-021-84032-z
DOI: https://doi.org/10.1038/s41598-021-84032-z
- Wu, X., Yu, L., Pehrsson, P.R. (2022). Are processed tomato products as nutritious as fresh tomatoes? Scoping review on the effects of industrial processing on nutrients and bioactive compounds in tomatoes. Adv. Nutr., 13(1), 138–151. https://doi.org/10.1093/advances/nmab109
DOI: https://doi.org/10.1093/advances/nmab109
- Zenda, T., Liu, S., Dong, A., Duan, H. (2021). Revisiting sulphur – the once neglected nutrient: it’s roles in plant growth, metabolism, stress tolerance and crop production. Agriculture, 11(7), 626. https://doi.org/10.3390/agriculture11070626
DOI: https://doi.org/10.3390/agriculture11070626
- Zhang, J., Liu, S., Zhu, X., Chang, Y., Wang, C., Ma, N., Wang, J., Zhang, X., Lyu, J., Xie, J. A. (2023a). Compre¬hensive evaluation of tomato fruit quality and identifica¬tion of volatile compounds. Plants, 12(16), 2947. https://doi.org/10.3390/plants12162947
DOI: https://doi.org/10.3390/plants12162947
- Zhang, L., Wang, P., Sun, X., Chen, F., Lai, S., Yang, H. (2020). Calcium permeation property and firmness change of cherry tomatoes under ultrasound combined with calcium lactate treatment. Ultrason. Sonochem., 60, 104784. https://doi.org/10.1016/j.ultsonch.2019.104784
DOI: https://doi.org/10.1016/j.ultsonch.2019.104784
- Zhang, L., Zhang, F., Wang, Y., Ma, X., Shen, Y.P., Wang, X.Z., Yang, H.Y., Zhang, W., Lakshmanan, P., Hu, Y.C., Xu, J.L., Chen, X.P., Deng, Y. (2023b). Physiological and metabolomic analysis reveals maturity stage-dependent nitrogen regulation of vitamin C content in pepper fruit. Front. Plant Sci., 13, 1049785. https://doi.org/10.3389/fpls.2022.1049785
DOI: https://doi.org/10.3389/fpls.2022.1049785
- Zhou, J., Zhang, H., Huang, Y., Jiao, S., Zheng, X., Lu, W., Jiang, W., Bai, X. (2024). Impact of sulfur deficiency and excess on the growth and development of soybean seedlings. Int. J. Mol. Sci., 25(20), 11253. https://doi.org/10.3390/ijms252011253
DOI: https://doi.org/10.3390/ijms252011253
Downloads
Download data is not yet available.
-
Muhammad Owais Shahid,
Atif Muhmood,
Muhammad Ihtisham,
Mati ur Rahman,
Noor Amjad,
Muhammad Sajid,
Khawar Riaz,
Asghar Ali,
FRUIT YIELD AND QUALITY OF 'FLORIDA KING' PEACHES SUBJECTED TO FOLIAR CALCIUM CHLORIDE SPRAYS AT DIFFERENT GROWTH STAGES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 1 (2020)
-
Nafiye Adak,
EFFECT OF DIFFERENT K+/CA2+ RATIOS ON YIELD, QUALITY AND PHYSIOLOGICAL DISORDER IN SOILLESS STRAWBERRY CULTIVATION
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 2 (2019)
-
Pelin Keles Ozturk,
Duygu Argun,
Saadettin Baloglu,
Davut Keles,
EFFECT OF Tobacco etch virus (TEV) ON YIELD AND QUALITY OF RED PEPPER IN TURKEY
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 6 (2020)
-
Mahmoud Abdel-Aziz Ahmed,
Abdullah Alebidi,
Rashid Al-Obeed,
Alaa Omar,
Effect of foliar spray of yeast extract and potassium nitrate on yield and fruit quality on Ziziphus jujuba L. trees
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 22 No. 1 (2023)
-
Said Saleh,
Guangmin Liu,
Mingchi Liu,
Wei Liu,
Nazim Gruda,
Hongju He,
REDUCING THE SALINITY IMPACT ON SOILLESS CULTURE OF TOMATOES USING SUPPLEMENTAL CA AND FOLIAR MICRONUTRIENTS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 3 (2019)
-
Adel Mohamed Al-Saif,
Mahmoud Abdel-Aziz Ahmed,
Rashid Al-Obeed,
Ahmed Said El-Sabagh,
Yield and fruit quality of Ziziphus jujuba L. trees as affected by preharvest foliar application of calcium and ascorbic acid
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 5 (2020)
-
Shahruz Habibi,
Ali Ebadi,
Ali Reza Ladanmoghadam,
Siavash Rayatpanah,
EFFECT OF PLANT GROWTH REGULATORS ON FRUIT SPLINTING IN THOMPSON NAVEL ORANGE
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 2 (2021)
-
Ewa Szpadzik,
Tomasz Krupa,
Wojciech Niemiec,
Ewa Jadczuk-Tobjasz,
YIELDING AND FRUIT QUALITY OF SELECTED SWEET CHERRY (Prunus avium) CULTIVARS IN THE CONDITIONS OF CENTRAL POLAND
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 3 (2019)
-
Ivana S Glišić,
Dragan P. Milatović,
Nebojša T. Milošević,
Slađana A. Marić,
Milan M. Lukić,
Branko T. Popović,
The PHYSICOCHEMICAL AND SENSORY CHARACTERISTICS OF PROMISING PLUM (Prunus domestica L.) GENOTYPES BRED AT FRUIT RESEARCH INSTITUTE, ČAČAK
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 2 (2021)
-
Andrzej Komosa,
Tomasz Kleiber,
Bartosz Markiewicz,
THE EFFECT OF NUTRIENT SOLUTIONS ON YIELD AND MACRONUTRIENT STATUS OF GREENHOUSE TOMATO (Lycopersicon esculentum Mill.) GROWN IN AEROPONIC AND ROCKWOOL CULTURE WITH OR WITHOUT RECIRCULATION OF NUTRIENT SOLUTION
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 13 No. 2 (2014)
1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.