Skip to main navigation menu Skip to main content Skip to site footer

ONLINE FIRST

Articles

Effects of melatonin and tryptophan applications on viability and germination performance of tomato seeds during and after artificial aging

DOI: https://doi.org/10.24326/asphc.2025.5437
Submitted: September 17, 2024
Published: 08.04.2025

Abstract

Although the diurnal fluctuations of melatonin (Mel) content in plants and its role in abiotic and biotic stress tolerance are well-documented, little is known about its changes within seeds and its potential effects on seed viability or the aging process. This study aimed to determine how artificial aging, induced by a controlled deterioration test, affects the Mel and tryptophan (Trp) content and seed viability. Furthermore, the study evaluated the effects of Mel and Trp applications on mitigating the impacts of aging in artificially aged seeds. Tomato seeds treated with 250 µM Mel and Trp were artificially aged for up to 8 days through controlled deterioration test after which Mel and Trp changes during ageing and the effect of treatments on seed viability and germination performance was determined. Seeds were also treated with Mel and Trp following artificial ageing in order to determine the effects of Mel and Trp on aged seeds. The positive effects of Mel and Trp applications on seed viability and vigor were particularly evident during and after artificial aging, compared to control seeds. It was observed that in control seeds subjected to controlled deterioration test, Mel and Trp contents exhibited an opposite trend. Applications of Mel and its precursor Trp, before and after artificial aging, significantly slowed down the aging process or alleviated the adverse effects of aging by protecting membrane structures against peroxidation and the accumulation of malondialdehyde (MDA) and H2O2. Moreover, indicators of seed deterioration such as electrical conductivity, MDA, and H2O2 contents were significantly reduced compared to untreated seeds, while the activities of antioxidant enzymes were boosted. In conclusion, the importance of Mel and Trp applications in preserving seed viability, minimizing storage losses, and slowing seed aging has been demonstrated, suggesting practical applications, particularly in preserving seeds of endangered species or valuable breeding materials.

References

  1. Ahmad, I. Zhu, G. Zhou, G. Liu, J. Younas, M.U. Zhu, Y. (2023). Melatonin role in plant growth and physiology under abiotic stress. Int. J. Mol. Sci., 24, 8759. https://doi.org/10.3390/ijms24108759
  2. Ali, S., Gill, R.A., Ulhassan, Z., Zhang, N., Hussain, S., Zhang, K., Huang, Q., Sagir, M., Tahir, M.B., Gill, M.B. (2023). Exogenously applied melatonin enhanced the tolerance of Brassica napus against cobalt toxicity by modulat-ing antioxidant defense, osmotic adjustment, and expression of stress response genes. Ecotoxicol. Environ. Saf., 252, 114624. https://doi.org/10.1016/j.ecoenv.2023.114624
  3. Altaf, M.A., Shahid, R., Ren, M-X., Naz, S., Altaf, M.M., Khan, L.U., Tiwari, R.K., Lal, M.K., Shahid, M.A., Kumar, R. (2022). Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants, 11, 309. https://doi.org/10.3390/antiox11020309
  4. Altaf, M.A., Sharma, N., Singh, J., Samota, M.K., Sankhyan, P., Singh, B., Kumar, A., Naz, S., Lal, M.K., Tiwari, R.K., Kumar, R. (2023a). Mechanistic insights on melatonin-mediated plant growth regulation and hormonal cross-talk process in solanaceous vegetables. Sci. Hortic., 308, 111570. https://doi.org/10.1016/j.scienta.2022.111570
  5. Altaf, M.A., Hao, Y., Shu, H., Mumtaz, M.A., Cheng, S., Alyemeni, M.N., Ahmad, P., Wang, Z. (2023b). Melatonin enhanced the heavy metal-stress tolerance of pepper by mitigating the oxidative damage and reducing the heavy metal accumulation. J. Hazard. Mater., 454, 131468. https://doi.org/10.1016/j.jhazmat.2023.131468
  6. Arnao, M.B., Hernández-Ruiz, J. (2020). Is phytomelatonin a new plant hormone? Agronomy, 10, 95. https://doi.org/10.3390/agronomy10010095
  7. Askari, M., Hamid, N., Abideen, Z., Zulfiqar, F., Moosa, A., Nafees, M., El-Keblawy, A. (2023). Exogenous melato-nin application stimulates growth, photosynthetic pigments and antioxidant potential of white beans under sa-linity stress. S. Afr. J. Bot., 160, 219‒228. https://doi.org/10.1016/j.sajb.2023.07.014
  8. Back, K. (2021). Melatonin metabolism, signaling and possible roles in plants. Plant J., 105, 376‒391. https://doi.org/10.1111/tpj.14915
  9. Basak, Ö., Demir, İ., Mavi, K., Matthews, S. (2006). Controlled deterioration test for predicting seedling emergence and longevity of pepper (Capsicum annuum L.) seed lots. Seed Sci. Technol., 34, 701‒712. https://doi.org/10.15258/sst.2006.34.3.16
  10. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utiliz-ing the principle of protein-dye binding. Anal. Biochem. 72, 248‒254. https://doi.org/10.1016/0003-2697(76)90527-3
  11. Castanares, J.L., Bouzo, C.A. (2019). Effect of exogenous melatonin on seed germination and seedling growth in melon (Cucumis melo L.) under salt stress. Hortic. Plant J., 5, 79‒87. https://doi.org/10.1016/j.hpj.2019.01.002
  12. Colombage, R., Singh, M.B., Bhalla, P.L. (2023). Melatonin and abiotic stress tolerance in crop plants. Int. J. Mol. Sci., 24, 7447. https://doi.org/10.3390/ijms24087447
  13. Chang, T., Zhao, Y., He, H., Xi, Q., Fu, J., Zhao, Y. (2021). Exogenous melatonin improves growth in hulless barley seedlings under cold stress by influencing the expression rhythms of circadian clock genes. Peer J, 9, e10740. https://doi.org/10.7717/peerj.10740
  14. Chrustek, A., Olszewska-Słonina, D. (2021). Melatonin as a powerful antioxidant. Acta Pharm., 71, 335‒354. https://doi.org/10.2478/acph-2021-0027
  15. De Vitis, M., Hay, F.R., Dickie, J.B., Trivedi, C., Choi, J., Fiegener, R. (2020). Seed storage: maintaining seed viability and vigor for restoration use. Restor Ecol., 28, S249‒S255.
  16. Dornbos, D.L. (1995). Seed vigor. In: Seed quality. Food Products Press, New York, pp. 45‒80.
  17. Dwivedi, S.L., Spillane, C., Lopez, F., Ayele, B.T., Ortiz, R. (2021). First the seed: Genomic advances in seed science for improved crop productivity and food security. Crop Sci., 61, 1501‒1526. https://doi.org/10.1002/csc2.20402
  18. El-Maarouf-Bouteau, H. (2022). The seed and the metabolism regulation. Biology, 11, 168. https://doi.org/10.3390/biology11020168.
  19. Ermiş, S., Karslioglu, M., Ozden, E., Demir, I. (2015). Use of a single radicle emergence count as a vigour test in pre-diction of seedling emergence potential of leek seed lots. Seed Sci. Technol., 43(2), 308‒312. https://doi.org/10.15258/sst.2015.43.2.16
  20. Fatokun, K., Beckett, R.P., Varghese, B. (2022). A Comparison of water imbibition and controlled deterioration in five orthodox species. Agronomy, 12, 1486. https://doi.org/10.3390/agronomy12071486
  21. Fathi, N., Kazemeini, S.A., Alinia, M., Mastinu, A. (2023). The effect of seed priming with melatonin on improving the tolerance of Zea mays L. var saccharata to paraquat-induced oxidative stress through photosynthetic sys-tems and enzymatic antioxidant activities. Physiol. Mol. Plant Pathol., 124, 101967. https://doi.org/10.1016/j.pmpp.2023.101967
  22. Gao, Y., Chen, H., Chen, D., Hao, G. (2023). Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. J. Pineal Res., 74, e12850. https://doi.org/10.1111/jpi.12850
  23. García-Cánovas, I., Giraldo-Acosta, M., Cano, A., Arnao, M. B., Hernández-Ruiz, J. (2024). Effect of melatonin on germination and seedling growth in aging seeds or under drought conditions. Seeds, 3(3), 341‒356.
  24. Guo, X., Shi, Y., Zhu, G., Zhou, G. (2023). Melatonin mitigated salinity stress on Alfalfa by improving antioxidant defense and osmoregulation. Agronomy, 13, 1727. https://doi.org/10.3390/agronomy13071727
  25. Golding, C., Lee, H. (2023). Study and synthesis of melatonin as a strong antioxidant in plants. Biol. Mol. Chem., 1, 35‒44. https://doi.org/10.22034/bmc.2023.417001.1006
  26. Güneş, A., Inal, A., Baggi, E.G., Coban, S., Pilbean, D.J. (2007). Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxici-ty. Sci. Hortic., 113, 113‒119. https://doi.org/10.1016/j.scienta.2007.03.009
  27. Hampton, J.G. (2002). What is seed quality? Seed Sci. Technol., 30(1), 1‒10.
  28. Herzog, V., Fahimi, H. (1973). Determination of the activity of peroxidase. Anal. Biochem., 55, 554‒562.
  29. Imran, M., Latif Khan, A., Shahzad, R., Aaqil Khan, M., Bilal, S., Khan, A., Kang, S.M., Lee, I.J. (2021). Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soy-bean plants. AoB Plants., 13, plab026. https://doi.org/10.1093/aobpla/plab026
  30. ISTA. (2005). International Rules for Seed Testing. International Seed Testing Association, Bassersdorf, Switzer-land.
  31. Karaca, A., Ardıç, Ş.K., Havan, A., Aslan, M.Ö., Yakupoğlu, G., Korkmaz, A. (2023). Melatonin and tryptophan effects on tomato seed deterioration during long-term storage. S. Afr. J. Bot., 156, 79‒90. https://doi.org/10.1016/j.sajb.2023.03.002
  32. Karaca, A., Köklü, Ş., Korkmaz, A. (2022). Diurnal and seasonal changes in melatonin content and its effect on ageing in plants. Bahçe, 51(1), 63‒71. https://doi.org/10.53471/bahce.963661
  33. Kołodziejczyk, I., Bałabusta, M., Szewczyk, R., Posmyk, M.M. (2015). The levels of melatonin and its metabolites in conditioned corn (Zea mays L.) and cucumber (Cucumis sativus L.) seeds during storage. Acta Physiol. Plant. 37, 105. https://doi.org/10.1007/s11738-015-1850-7
  34. Kolupaev, Y.E., Taraban, D.A., Kokorev, A.I., Yastreb, T.O., Pysarenko, V.M., Sherstiuk, E., Karpets, Y.V. (2024). Effect of melatonin and hydropriming on germination of aged triticale and rye seeds. Bot. Lith., 30(1), 1–13. https://doi.org/10.35513/Botlit.2024.1.1
  35. Korkmaz, A., Değer, Ö., Cuci, Y. (2014). Profiling the melatonin content in organs of the pepper plant during differ-ent growth stages. Sci. Hortic., 172, 242‒247. https://doi.org/10.1016/j.scienta.2014.04.018
  36. Korkmaz, A., Düver, E., Szafrańska, K., Karaca, A., Ardıç, Ş.K. Yakupoğlu, G. (2022). Feasibility of using melatonin content in pepper (Capsicum annuum L.) seeds as a physiological marker of chilling stress tolerance. Funct. Plant Biol., 49, 832‒843.
  37. Korkmaz, A., Gerekli, A., Yakupoğlu, G., Karaca, A., Köklü, S. (2020). Seed treatment with tryptophan improves germination and emergence of pepper under salinity stress. Acta Hortic., 1273, 441–448. https://doi.org/10.17660/ActaHortic.2020.1273.57
  38. Korkmaz, A., Karaca, A., Kocacinar, F., Cuci, Y. (2017a). The effects of seed treatment with melatonin on germina-tion and emergence performance of pepper seeds under chilling stress. J. Agric. Sci., 23, 167–176.
  39. Korkmaz, A., Köklü, S., Yakupoğlu, G. (2018). Investigating the effects of melatonin application on the ageing process of pepper seeds. Acta Hortic., 1204, 9–16. https://doi.org/10.17660/ActaHortic.2018.1204.2
  40. Korkmaz, A., Yakupoğlu, G., Köklü, S., Cuci, Y., Kocaçınar, F. (2017b). Determining diurnal and seasonal changes in tryptophan and melatonin content of eggplant (Solanum melongena L.). Turk. J. Bot., 41, 356‒366. https://doi.org/10.3906/bot-1611-48
  41. Köklü, S. (2016). Investigating the effects of melatonin on the ageing process of pepper seeds. Kahramanmaras¸ Sütçü Imam University, Institute for Graduate Studies in Science and Technology. (Turkish with English ab-stract M.Sc. Thesis).
  42. Khattak, W.A., Sun, J., Abbas, A., Hameed, R., Jalal, A., Niaz, N., Anwar, S., Liu, Y., Wang, Y. (2023). Melatonin alleviating drought stress in plants: a review. S. Afr. J. Bot., 161, 192‒201. https://doi.org/10.1016/j.sajb.2023.08.003
  43. Kravić, N., Dragičević, V., Milivojević, M., Babić, V., Žilić, S. (2021). Antioxidants from maize seeds and accelerat-ed ageing. Sel. Semen., 27, 47‒57. http://dx.doi.org/10.5937/SelSem2102047K
  44. Kuppusamy, A., Alagarswamy, S., Karuppusami, K.M. Maduraimuthu, D., Natesan, S., Ramalingam, K., Muniyap-pan, U., Subramanian, M., Kanagarajan, S. (2023). Melatonin enhances the photosynthesis and antioxidant en-zyme activities of mung bean under drought and high-temperature stress conditions. Plants, 12, 2535. https://doi.org/10.3390/plants12132535
  45. Lerner, A.B., Case, J.D., Takahashi, Y., Lee, T.H., Mori, W. (1958). Isolation of melatonin, the pineal factor that lightness melanocytes. J. Chem. Soc., 80, 2587‒2592. https://doi.org/10.1021/ja01543a060
  46. Li, J., Sohail, H., Nawaz, M.A., Liu, C., Yang, P. (2022). Physiological and proteomic analyses reveals that brassino-steroids application improves the chilling stress tolerance of pepper seedlings. Plant Growth Regul., 96, 315–329. https://doi.org/10.1007/s10725-021-00778-6
  47. Liu, G., Hu, Q., Zhang, X., Jiang, J., Zhang, Y., Zhang, Z. (2022). Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. J. Exp. Bot., 73, 5818‒5827. https://doi.org/10.1093/jxb/erac196
  48. Madebo, M.P., Hu, S., Zheng, Y., Jin, P. (2021). Mechanisms of chilling tolerance in melatonin treated postharvest fruits and vegetables: A review. J. Future Foods, 1, 156‒167. https://doi.org/10.1016/j.jfutfo.2022.01.005
  49. Muhammad, H.M.D., Naz, S., Lal, M.K., Tiwari, R.K., Ahmad, R., Nawaz, M.A., Das, R., Altaf, M.A. (2024). Mela-tonin in business with abiotic stresses in vegetable crops. Sci. Horti. 324, 112594. https://doi.org/10.1016/j.scienta.2023.112594
  50. Muhammad, I., Yang, L., Ahmad, S., Mosaad, I.S., Al-Ghamdi, A.A., Abbasi, A.M., Zhou, X.B. (2022). Melatonin application alleviates stress-induced photosynthetic inhibition and oxidative damage by regulating antioxidant defense system of maize: a meta-analysis. Antioxidants, 11, 512. https://doi.org/10.3390/antiox11030512
  51. Negri, S., Commisso, M., Avesani, L., Guzzo, F. (2021). The case of tryptamine and serotonin in plants: a mysteri-ous precursor for an illustrious metabolite. J. Exp. Bot., 72, 5336–5355. https://doi.org/10.1093/jxb/erab220
  52. Njie, E.S. (2015). The effects of seed storage moisture and temperature on the quality of cabbage, carrot, lettuce, onion and tomato seeds under Gambian conditions and enhancing the quality with farm priming. Ankara Uni-versity Graduate School of Natural and Applied Sciences Department of Horticulture (Turkish with English ab-stract Master Thesis).
  53. Özmen, K., Kenanoğlu, B.B. (2024). Determination of efficiency degrees on vigor and antioxidant content of after ripening treatment in eggplant seeds. Not. Bot. Horti Agrobot. Cluj-Napoca, 52, 13237‒13237. https://doi.org/10.15835/nbha52113237
  54. Özden, Ö., Erkan, N., Deval M.C. (2009). Trace mineral profiles of the bivalve species Chamelea gallina and Donax trunculus. Food Chem., 113, 222‒226. https://doi.org/10.1016/j.foodchem.2008.06.069
  55. Powell, A.A. (2022). Seed vigour in the 21st century. Seed Sci. Technol., 50, 45‒73. https://doi.org/10.15258/sst.2022.50.1.s.04.
  56. Rahman, L., Rahman, M., Hasan, M., Habib, A., Rahman, M., Baque, A. (2019). Quality assessment of pea (Pisum sativum L.) seeds using the controlled deterioration technique. Trends Hortic., 2, 46‒56. https://doi.org/10.24294/th.v2i1.718
  57. Ramasamy, K., Karuppasami, K.M., Alagarswamy, S., Shanmugam, K.P., Rathinavelu, S., Vellingiri, G., Muniyap-pan, U., Kanthan, T., Kuppusamy, A., Rajendran, M., Kathirvel, A., Kanagarajan, S. (2023). Role of melatonin in directing plant physiology. Agronomy, 13, 2405. https://doi.org/10.3390/agronomy13092405
  58. Sharma, P., Thakur, N., Mann, N.A., Umar, A. (2024). Melatonin as plant growth regulator in sustainable agricul-ture. Sci. Hortic., 323, 112421. https://doi.org/10.1016/j.scienta.2023.112421
  59. Shelar, V.R., Shaikh, R.S., Nikam, A.S. (2008). Soybean seed quality during storage: a review. Agric. Rev., 29, 125‒131.
  60. Seckin, B., Turkan, I., Sekmen, A.H., Ozfidan, C. (2010). The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environ. Exp. Bot., 69, 76–85. https://doi.org/10.1016/j.envexpbot.2010.02.013
  61. Tilden, R.L., West, S.H. (1985). Reversal effects of ageing in soybean seeds. Plant Physiol., 77, 584‒586.
  62. Tiwari, R.K., Kumar, R., Lal, M.K., Kumar, A., Altaf, M.A., Devi, R., Mangal, V., Naz, S., Altaf, M.M., Dey, A., Aftab, T. (2023). Melatonin-polyamine interplay in the regulation of stress responses in plants. Plant Growth Regul., 42, 4834‒4850. https://doi.org/10.1007/s00344-022-10717-y
  63. Vidigal, D.S., Dias, D.C.F.S., Dias, L.A.S., Finger, F.L. (2011). Changes in seed quality during fruit maturation of sweet pepper. Sci. Agric., 68, 535‒539. https://doi.org/10.1590/S0103-90162011000500004.
  64. Wimalasekera, R. (2015). Role of seed quality in improving crop yields. In: Hakeem, K. (eds) Crop production and global environmental issues. Springer, Cham. https://doi.org/10.1007/978-3-319-23162-4_6
  65. Wu, X., Ren, J., Huang, X., Zheng, X., Tian, Y., Shi, L., Dong, P., Li, Z. (2021). Melatonin: biosynthesis, content, and function in horticultural plants and potential application. Sci. Hortic., 288, 110392. https://doi.org/10.1016/j.scienta.2021.110392
  66. Yakupoğlu, G. (2016). Determining melatonin content and its effectiveness against chilling stress in eggplant. Kahramanmaras¸ Sütçü İmam University, Institute for Graduate Studies in Science and Technology. [Turkish with English abstract Ph.D. Thesis].
  67. Yakupoğlu, G., Köklü, ¸S., Karaca, A., Düver, E., Klicic, A., Korkmaz, A. (2018). Changes in melatonin content of pepper seeds during storage. Acta Hortic., 1273, 425–432.
  68. Yakupoğlu, G., Köklü, S., Karaca, A., Düver, E., Reiter, R.J., Korkmaz, A. (2021). Fluctuations in melatonin content and its effects on the ageing process of lettuce seeds during storage. Acta Sci. Pol. Hortorum Cultus, 20, 77–88. https://doi.org/10.24326/asphc.2021.3.10
  69. Yu, Y., Deng, L., Zhou, L., Chen, G., Wang, Y. (2022). Exogenous melatonin activates antioxidant systems to in-crease the ability of rice seeds to germinate under high temperature conditions. Plants, 11, 886. https://doi.org/10.3390/plants11070886
  70. Zinsmeister, J., Leprince, O., Buitink, J. (2020). Molecular and environmental factors regulating seed longevity. Bio-chem. J., 477, 305–323. https://ddd.uab.cat/record/230978
  71. Zhou, W., Chen, F., Luo, X., Dai, Y., Yang, Y., Zheng, C., Yang, W., Shu, K. (2020). A matter of life and death: Mo-lecular, physiological, and environmental regulation of seed longevity. Plant Cell Environ., 43, 293‒302. https://doi.org/10.1111/pce.13666
  72. Zhang, H., Zhang, X., Gao, G., Ali, I., Wu, X., Tang, M., Chen, L., Jiang, L., Liang, T. (2023). Effects of various seed priming on morphological, physiological, and biochemical traits of rice under chilling stress. Front. Plant Sci., 14, 1146285. https://doi.org/10.3389/fpls.2023.1146285
  73. Zhang, H.Y., Jiang, Y.N., He, Z.Y., Ma, M. (2005). Cadmium accumulation and oxidative burst in garlic (Allium sativum). J. Plant Physiol., 162, 977‒984. https://doi.org/10.1016/j.jplph.2004.10.001

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.