ANTIOXIDANT ACTIVITY AND CYTOTOXIC EFFECT OF CHILEAN Buddleja globosa (MATICO) AND Ribes magellanicum (ZARZAPARRILLA) FLOWER EXTRACTS

Pedro Zamorano-Aguilar

Graduate School, Faculty of Agricultural Science, Universidad Austral de Chile, Av. Carlos Ibañez del Campo S/N Valdivia, Chile
https://orcid.org/0000-0003-0452-2239

Marcela Morales

Grupo Química de los Productos Naturales y los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia, Calle 59a N° 63-20 Medellín, Colombia

Yudrum Rivillas

Grupo Biotecnología Animal, Facultad de Ciencias, Universidad Nacional de Colombia, Calle 59a N° 63-20 Medellín, Colombia

Juan López

Grupo Biotecnología Animal, Facultad de Ciencias, Universidad Nacional de Colombia, Calle 59a N° 63-20 Medellín, Colombia

Benjamín A. Rojano

Grupo Química de los Productos Naturales y los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia, Calle 59a N° 63-20 Medellín, Colombia
https://orcid.org/0000-0003-3590-8046


Abstract

The native Chilean shrubs Buddleja globosa (matico) and Ribes magellanicum (zarzaparrilla) are used widely at a rural level, due to their medicinal properties. Nevertheless, little is known about their secondary metabolites and cytotoxic effect. The aim of this study was to evaluate the content of different compounds like catechin, epicatechin, p-coumaric acid and the antioxidant capacity by ABTS, ORAC, FRAP and DPPH methods. In addition, the cytotoxic activity of both extracts was evaluated against Chinese hamster ovary (CHO-K1) cell lines by MTT and neutral red assays. The results suggest that the most abundant constituent in Budleja globosa and Ribes magellanicum were catechin (682.43 mg/100 g DW) and epicatechin (3362.08 mg/100 g DW) respectively; while the ORAC methodology showed an elevated antioxidant activity for matico (134147.31 μmol Trolox Eq/100 g DW). On the other hand, both extracts at the assayed concentrations affect the membrane stability and cellular metabolic capacity of the CHO-K1 cell lines. These finding provide a direction for further researches, and suggest the matico and zarzaparrilla flower extracts as promising sources of antioxidants, and as research objects through the analyze of their metabolic behavior and antitumoral potential.

Keywords:

matico, zarzaparrilla, antioxidant capacity, cytotoxic activity, bioactive compounds, polyphenols

Aaby, K., Hvattum, E., Skrede, G. (2004). Analysis of flavonoids and other phenolic compounds using high performance liquid chromatography with coulometric array detection: relationship to antioxidant activity. J. Agric. Food Chem., 52, 4595–4603. DOI: 10.1021/jf0352879

Al-Mustafa, A.H., Al-Thunibat, O.Y. (2008). Antioxidant activity of some Jordanian medicinal plants used traditionally for treatment of diabetes. Pak. J. Biol. Sci., 11(3), 351–358. DOI: 10.3923/pjbs.2008.351.358

Arnao, M.B. 2000. Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci., 11, 419–421. DOI: 10.1016/s0924-2244(01)00027-9

Avello, M., Pastene, E., Barriga, A., Bittner, M., Ruiz, E., Becerra, J. (2014). Chemical properties and assessment of the antioxidant capacity of leaf extracts from populations of Ugni molinae growing in continental Chile and in Juan Fernandez archipelago. Int. J. Pharmacogn. Phytochem. Res., 6, 746–752.

Backhouse, N., Erazo, S., Negrete, R., Rosales, L., Ramírez, F. (2002). San Feliciano. Avances en la búsqueda de compuestos antiinflamatorios y antiartríticos en especies chilenas: Buddleja globosa y Fabiana densa. I Congreso Iberoamericano de Química Fina Farmacéutica CYTED, 15–19 de abril, Salamanca, España (panel).

Benzie, I.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 239(1), 70–76.

Berridge, M.V., Tan, A.S. (1993). Characterization of the Cellular Reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular Localization, Substrate Dependence, and Involvement of Mitochondrial Electron Transport in MTT Reduction. Arch. Biochem. Biophys., 303(2), 474–482.

Bouzaiene, N.N., Jaziri, S.K., Kovacic H., Chekir-Ghedira, L., Ghedira, K., Luis, J. (2015). The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. Eur. J. Pharmacol., 766, 99–105.

Borenfreund, E., Puerner, J.A. (1985). A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). J. Tissue Cult. Methods, 9(1), 7–9.

Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol., 28, 25–30.

Calil Brondani, J., Reginato, F.Z., Silva Brum, E., da, De Souza Vencato, M., Lima Lhamas, C., Viana, C., Manfron, M.P. (2017). Evaluation of acute and subacute toxicity of hydroethanolic extract of Dolichandra unguiscati L. leaves in rats. J. Ethnopharmacol., 202(3), 147–153.

Eyéghé-Bickong, H.A., Alexandersson, E.O., Gouws, L.M., Young, P.R., Vivier, M.A., 2012. Optimization of an HPLC method for the simultaneous quantification of the major sugars and organic acids in grapevine berries. J. Chromatogr. B, 885–886, 43–49. DOI: 10.1016/j.jchromb.2011.12.011

Fernández-Pachón, M.S., Villaño, D., Troncoso, A.M., García-Parrilla, M.C. (2006). Revisión de los métodos de evaluación de la actividad antioxidante in vitro del vino y valoración de sus efectos in vivo. Arch. Latinoam. Nutr., 5(2), 110–122. DOI: 10.1163/_q3_SIM_00374

Fields, W., Fowler, K., Hargreaves, V., Reeve, L., Bombick, B. (2017). Development, qualification, validation and application of the neutral red uptake assay in Chinese Hamster Ovary (CHO) cells using a VITROCELL® VC10® smoke exposure system. Toxicol. In Vitro, 40, 144–152. DOI: 10.1016/j.tiv.2017.01.001

Frankel, E.N., Huang, S.W., Kanner, J., German, J.B. (1994). Interfacial phenomena in the evaluation of antioxidants: Bulk oils versus emulsions. J. Agric. Food Chem., 42, 1054–1059. DOI: 10.1021/jf00041a001

Gurib-Fakim, A. (2006). Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol. Aspects Med., 27, 1–93. DOI: 10.1016/j.mam.2005.07.008

Houghton, P.J. (1984). Ethnopharmacology of some Buddleja species. J. Ethnopharmacol., 11(3), 293–308. DOI: 10.1016/0378-8741(84)90075-8

Houghton, P.J. (2003). Buddleja globosa: a medicinal plant of Chile, their chemistry, biological activity and traditional uses. BLACPMA, 2(3), 36–41.

Huang, D., Ou, B., Prior, R.L. (2005). The chemistry behind dietary antioxidant capacity assays. J. Agric. Food Chem., 53(6), 1841–1856. DOI: 10.1021/jf030723c

Jersáková, J., Jürgens, A., Smilauer, P., Johnson, S.S. (2012). The evolution of floral mimicry: identifying traits that visually attract pollinators. Funct. Ecol., 26, 1381–1389. DOI: 10.1111/j.1365-2435.2012.02059.x

Jiménez-Aspee, F., Thomas-Valdés, S., Schulz, A., Ladio, A., Theoduloz, C., Schmeda-Hirschmann, G. (2016). Antioxidant activity and phenolic profiles of the wild currant Ribes magellanicum from Chilean and Argentinean Patagonia. Food Sci. Nutr., 4(4), 595–610. DOI: 10.1002/fsn3.323

Kelebek, H., Selli, S., Canbas, A., Cabaroglu, T. (2009). HPLC determination of organic acids, sugars, phenolic composi- tions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kosan. Microchem. J., 91(2), 187–192. DOI: 10.1016/j.microc.2008.10.008

Koňariková, K., Ježovičová, M., Keresteš, J., Gbelcová, H., Ďuračková, Z., Žitňanová, I. (2015). Anticancer effect of black tea extract in human cancer cell lines. Springerplus, 4, 127. DOI: 10.1186/s40064-015-0871-4

Kumar, S., Pandey, A.K. (2013). Chemistry and biological activities of flavonoids: An overview. Sci. World J., 4(2), 32– 48. DOI: 10.1155/2013/162750

Ladio, A.H., Lozada, M., Weigandt, M. 2007. Comparison of traditional wild plant knowledge between aboriginal communities inhabiting arid and forest environments in Patagonia, Argentina. J. Arid. Environ., 69, 695–715. DOI: 10.1016/j.jaridenv.2006.11.008

Li, H., Wang, X., Li, Y., Li, P., Wang, H. (2009). Polyphenolic compounds andantioxidant properties of selected China wines. Food Chem., 112(2), 454–460. DOI: 10.1016/j.foodchem.2008.05.111

Lu, J.M., Lin, P.H., Yao, Q., Chen, C. (2010). Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med., 14(4), 840–860. DOI: 10.1111/j.1582-4934.2009.00897.x

Lucini, L., Kane, D., Pellizzoni, M., Ferrari, A., Trevisi, E., Ruzickova, G., Arslan, D. (2016). Phenolic profile and in vitro antioxidant power of different milkthistle [Silybum marianum (L.) Gaertn.] cultivars. Ind. Crops Prod., 83, 11–16. DOI: 10.1016/j.indcrop.2015.12.023.

Määttä, K.R., Kamal-Eldin, A., Törrönen, A.R. (2003). High-performance liquid chromatography (HPLC) analysis of phe- nolic compounds in berries with diode array and electrospray ionization mass spectrometric (MS) detection: Ribes species. J. Agr. Food Chem., 51, 6736–6744. DOI: 10.1021/jf0347517

Marinova, D., Ribarova, F., Atanassova, M. (2005). Total phenolics and total flavonoids in bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metall., 40(3), 255–260.

Marszalek, K., Wozniak, L., Kruszewski, B., Skapska, S. 2017. The Effect of High Pressure Techniques on the Stability of Anthocyanins in Fruit and Vegetables. Int. J. Mol. Sci., 18(2), pii: E277. DOI: 10.3390/ijms18020277

Moon, J., Shibamoto, T. (2009). Antioxidant assays for plant and food components. J. Agric. Food Chem., 57(5), 1655– 1666. DOI: 10.1021/jf803537k

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65(1–2), 55–63. DOI: 10.1016/0022-1759(83)90303-4

Muanda, F., Koné, D., Dicko, A., Soulimani, R., Younos, C. (2011). Phytochemical composition and antioxidant capacity of three malian medicinal plant parts. Evid. Based Complement. Alternat. Med., 8(1), 1–8. DOI: 10.1155/2011/620862

Muñoz, M., Muñoz, C., Godoy, I. (1986). Especies nativas con potencial como frutales arbustivos. IPA Carillanca, 5(3), 32–35.

Najmus, A.A., Whitney, P.J. (2011). Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards monoand di- saccharide sugars. Biomass Bioenergy, 35(11), 4748–4750. DOI: 10.1016/j.biombioe.2011.09.013

Oliveiro, T., Capuano, E., Cämmerer, B., Fogliano, V. (2009). Influence of roasting on the antioxidant activity and HMF formation of a cocoa bean model systems. J. Agric. Food Chem., 57(1), 147–52. DOI: 10.1021/jf802250j

Peña-Cerda, M., Arancibia-Radich, J., Valenzuela-Bustamante, P., Pérez-Arancibia, R., Barriga, A., Seguel, I., García, L. Delporte, C. (2017). Phenolic composition and antioxidant capacity of Ugni molinae Turcz. leaves of different genotypes. Food Chem., 215, 219–227. DOI: 10.1016/j.foodchem.2016.07.159

Pittella, F., Dutra, R.C., Junior, D.D., Lopes, M.T., Barbosa, N. (2009). Antioxidant and cytotoxic activites of Centella asiatica (L.) Urb. Int. J. Mol. Sci., 10(9), 3713–3721. DOI: 10.3390/ijms10093713

Placencia, M., Núñez, M., Oliveira, G., Torrealva, L., Bonilla, P., Jurupe, H. (2002). Efecto antiulceroso y citoprotector de matico, Piper angustifolium (Perú) y Buddleja globosa (Chile), en animales de experimentación. An. Fac. Med., 63, 21–31.

Pounis, G., Costanzo, S., Guiseppe, R., di, Lucia, F., de, Santimone, I., Sciarretta, A., Barisciano, P., Persichillo, M., Curtis, A., de, Zito, F., Di Castelnuovo, A.F., Sieri, S., Benedetta Donati, M., Gaetano, G., de, Iacovello, L. (2013). Consumption of healthy foods at different contentof antioxidant vitamins and phytochemicals and metabolic risk factors for cardiovascular disease in men and women of the Moli-sani study. Eur. J. Clin. Nutr., 67(2), 207–213. DOI: 10.1038/ejcn.2012.201.

Prior, R.L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill, M., Huang, D., Ou, B., Jacob, R. (2003). Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem., 51(11), 3273–3279. DOI: 10.1021/jf0262256

Prior, R.L., Wu, X., Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 53(10), 4290–4302. DOI: 10.1021/jf0502698

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical catión decolorization assay. Free Radic. Biol. Med., 26(9–10), 1231–1237. DOI: 10.1016/S0891-5849(98)00315-3

Romero, M., Rojano, B., Mella, J., Pessoa, C.D., Lissi, E., López, C. (2010). Antioxidant capacity of pure compounds and complex mixtures evaluated by the ORAC-Pyrogallol red assay in the presence of Triton X-100 micelles. Molecules, 15(9), 6152–6167. DOI: 10.3390/molecules15096152

Ruiz, A., Bustamante, L., Vergara, C., Von Baer, D., Hermosin-Gutierrez, L., Obando, L., Mardones, C. (2015). Hy- droxycinnamic acids and flavonols in native edible berries of South Patagonia. Food Chem., 167, 84–90. DOI: 10.1016/j.foodchem.2014.06.052

Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M., Bruni, R. (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in food. Food Chem., 91, 621–632. DOI: 10.1016/j.foodchem.2004.06.031

Silva, L.M., Figueiredo, E.A., Ricardo, N.M., Vieira, I.G., Figueiredo, R.W., Brasil, I.M., Gomes, C.L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem., 143, 398–404. DOI: 10.1016/j.foodchem.2013.08.001

Simirgiotis, M.J., Schmeda-Hirschmann, G. (2010). Direct identification of phenolic constituents in Boldo Folium (Peumus boldus Mol.) infusions by high-performance liquid chromatography with diode array detection and electrospray ionization tandem mass spectrometry. J. Chromatogr. A, 217, 443–449. DOI: 10.1016/j.chroma.2009.11.014

Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Vitic., 16, 144–158.

Song, F.L., Gan, R.Y., Zhang, Y., Xiao, Q., Kuang, L., Li, H.-B. (2010). Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants. Int. J. Mol. Sci., 11, 2362–2372. DOI: 10.3390/ijms11062362

Song, L., Wang, X., Zheng, X., Huang, D. (2011). Polyphenolic antioxidant profiles of yellow camellia. Food Chem., 129, 351–357. DOI: 10.1016/j.foodchem.2011.04.083

Soto, C., Caballero, E., Pérez, E., Zúñiga, M.A. (2014). Effect of extraction conditions on total phenolic content and antioxidant capacity of pretreated wild Peumus boldus leaves from Chile. Food Bioprod. Process., 92(3), 328–333. DOI: 10.1016/j.fbp.2013.06.002

Torres y Torres, J.L., Rosazza, J.P. (2001). Microbial transformations of p-coumaric acid by Bacillus megaterium and Curvularia lunata. J. Nat. Prod., 64(11), 1408–1414. DOI: 10.1021/np010238g

Vogel, H., Razmilic, I., San Martín, J., Doll, U., González, B. (2005). Plantas medicinales chilenas: Experiencia de domesticación y cultivo de boldo, matico, bailahuén, canelo, peumo y maqui. Editorial Universidad de Talca, Talca, 171–193.

Wang, P., Henning, S.M., Heber, D. (2010). Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS One, 5(4), 1–10. DOI: 10.1371/journal.pone.0010202

Wojcikowski, K., Stevenson, L., Leach, D., Wohlmuth H., Gobe, G. (2007). Antioxidant capacity of 55 medicinal herbs traditionally used to treat the urinary system: a comparison using a sequential three-solvent extraction process. J. Altern. Complement. Med., 13, 103–109. DOI: 10.1089/acm.2006.6122

Wojdylo, A., Osmianski, J., Czermerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem., 105(3), 940–949. DOI: 10.1016/j.foodchem.2007.04.038

Download

Published
2020-12-31



Pedro Zamorano-Aguilar 
Graduate School, Faculty of Agricultural Science, Universidad Austral de Chile, Av. Carlos Ibañez del Campo S/N Valdivia, Chile https://orcid.org/0000-0003-0452-2239
Marcela Morales 
Grupo Química de los Productos Naturales y los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia, Calle 59a N° 63-20 Medellín, Colombia
Yudrum Rivillas 
Grupo Biotecnología Animal, Facultad de Ciencias, Universidad Nacional de Colombia, Calle 59a N° 63-20 Medellín, Colombia
Juan López 
Grupo Biotecnología Animal, Facultad de Ciencias, Universidad Nacional de Colombia, Calle 59a N° 63-20 Medellín, Colombia
Benjamín A. Rojano 
Grupo Química de los Productos Naturales y los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia, Calle 59a N° 63-20 Medellín, Colombia https://orcid.org/0000-0003-3590-8046



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.