Dorota Szopińska

Poznań University of Life Sciences


Organic acids are known for their antibacterial and antifungal properties. The purpose of the research was to study the effect of acetic, ascorbic, citric and lactic acid
treatments on zinnia seed germination, vigour and infestation with fungi. Two seed samples, cultivars ‘Jowita’ and ‘Scarlet Flame’, varying in fungi occurrence intensity, were treated with organic acids solutions at concentrations of 1.0, 2.5 and 5.0%. Controls were untreated seeds, seeds treated with fungicide Penncozeb 80 WP, and seeds soaked for 30 min in distilled water. Acetic acid in the highest extent limited fungal occurrence on seeds, however negatively affected seed germination and vigour. Ascorbic and citric acids had no effect on the total seed infestation with fungi. Moreover, the acids significantly stimulated growth of Botrytis cinerea on the seeds. Lactic acid decreased the number of seeds infected with fungi, especially with Alternaria zinniae and Fusarium spp., however at the highest concentration negatively affected germination parameters and deteriorated seed vigour.


acetic acid, ascorbic acid, citric acid, lactic acid, zinnia seeds quality, seedborne fungi

Aml El-Saidy E.A., Abd El-Hai K.M., 2011. Alleviation of peanut seed deterioration during storage using biotic and abiotic agents. Res. J. Seed Sci. 4(2), 64–81.
De Muynck C.D., Leroy A.I.J., Maeseneire S.D., Arnaut F., Soetaert W., Vandamme E.J., 2004. Potential of selected lactic acid bacteria to produce food compatible antifungal metabolites. Microbiol. Res. 159, 339–346.
Dimock A.W., Osborn J.H., 1943. An Alternaria disease of zinnia. Phytopathology 33, 372–381.
International Rules for Seed Testing, 2006. International Seed Testing Association. Bassersdorf, Switzerland.
Jalink H., van der Schoor R., 1999. SeedCalculator 2.1. License number: 100200122. Plant Research International, Wageningen, The Netherlands.
Laitila A., Alakomi H-L., Raaska L., Mattila-Sandholm T., Haikara A., 2002. Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting barley. J. Appl. Microbiol. 93, 566–576.
Lang M.M., Ingham B.H., Ingham S.C., 2000. Efficacy of novel organic acid and hypochlorite treatments for eliminating Escherichia coli O157:H7 from alfalfa seeds prior to sprouting. Int. J. Food Microbiol. 58, 73–82.
Lavermicocca P., Valerio F., Visconti A., 2003. Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl. Environ. Microbiol. 69(1), 634–640.
Loewus F.A., 1999. Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52, 193–210.
Łacicowa B., Filipowicz A., Wagner A., 1979. Grzyby chorobotwórcze dla Zinnia elegans L. Acta Mycologica 15(1), 11–20.
Łacicowa B., Kiecana I., Pięta D., 1991. Mikroflora materiału siewnego roślin ozdobnych. I. Mikroflora materiału siewnego cynii (Zinnia elegans L.) i groszku pachnącego (Lathyrus odoratus L.). Rośliny Ozdobne, Prace ISiK Seria B 16, 109–116.
Machado J.C., Langerak C.J., Jaccoud-Filho D.S., 2002. Seed-borne fungi: a contribution to routine seed health analysis. International Seed Testing Association. Basserdorf, Switzerland.
Magnusson J., Schnürer J., 2001. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl. Environ. Microbiol. 67(1), 1–5.
Magnusson J., Ström K., Roos S., Sjögren J., Schnürer J., 2003. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol. Lett. 219, 129–135.
Mathur S.B., Kongsdal O., 2003. Common laboratory seed health testing methods for detecting fungi. International Seed Testing Association, Bassersdorf, Switzerland.
Myrvik Q.N., Volk W.A., 1954. Comparative study of the antibacterial properties of ascorbic acid and reductogenic compounds. J. Bacteriol. 68(5), 622–626.
Palacios M.G., Smits G.B., Noguera R., 1991. Presencia e influencia de algunos hongos patogenos en cultivos de Zinnia elegans Jacq. en la Region Central de Venezuela. Agronom. Trop. 41(5–6), 237–244.
Pao S., Kalantari A., Khalid M.F., 2008. Eliminating Salmonella enterica in alfalfa and mung bean sprouts by organic acid and hot water immersions. J. Food Process. Preserv. 32, 335–342.
Pasini C., D’Aquila F., Curir P., Gullino M.L., 1997. Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses. Crop Prot. 16(3), 251–256.
Richardson M.J., 1990. An annotated list of seed-borne diseases. International Seed Testing Association. Zűrich, Switzerland.
Rouse S., Harnett D., Vaughan A., van Sinderen D., 2008. Lactic acid bacteria with potential to eliminate fungal spoilage in foods. J. Appl. Microbiol. 104, 915–923.
Sathe S.J., Nawani N.N., Dhakephalkar P.K., Kapadnis B.P., 2007. Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. J. Appl. Microbiol. 103, 2622–2628.
Schnürer J., Magnusson J., 2005. Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci. Tech. 16, 70–78.
Sholberg P.L., Gaunce A.P., 1995. Fumigation of fruit with acetic acid to prevent post harvest decay. HortScience 30, 1271–1275.
Sholberg P.L., Gaunce A.P., 1996. Fumigation of high moisture seed with acetic acid to control storage mold. Can. J. Plant Sci. 76, 551–555.
Sholberg P.L., Gaudet D.A., Puchalski B., Randall P., 2006. Control of common bunt (Tilletia tritici and T. laevis) of whet (Triticum aestivum cv. ‘Laura’) by fumigation with acetic acid vapour. Can. J. Plant. Sci. 86, 839–843.
Ström K., Schnürer J., Melin P., 2005. Co-cultivation of antifungal Lactobacillus plantarum MiLAB 393 and Aspergillus nidulans, evaluation of effects on fungal growth and protein expression. FEMS Microbiol. Lett. 246, 119–124.
Szopińska D., Tylkowska S., 2009. Effect of osmopriming on germination, vigour and location of fungi in Zinnia elegans seeds. Phytopathologia 54, 33–44.
Tripathi P., Dubey N.K., 2004. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharv. Biol. Tec. 32, 235–245.
Van der Wolf J.M., Birnbaum Y., van der Zouwen P.S., Groot S.P.C., 2008. Disinfection of vegetable seed by treatment with essential oils, organic acids and plant extracts. Seed Sci. Technol. 36, 76–88.
Wu W.S., Yang Y.H., 1992. Alternaria blight, a seed-transmitted disease of zinnia in Taiwan. Plant Pathol. Bull. 1, 115–123.


Dorota Szopińska 
Poznań University of Life Sciences



Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.


Most read articles by the same author(s)