Physiological reaction and chemical composition of Stachys schtschegleevii Sosn. essential oil under water deficit.

Hamid Mohammadi

Department of Agronomy College of Agriculture, Azarbaijan Shahid Madani University, Iran

Ahmad Aghaee

Department of Biology, Faculty of Science, University of Maragheh, Iran

Parya Pormohammad

Department of Agronomy, Faculty of Agriculture, Azarbaijan Shahid Madani University, Iran

Mansour Ghorbanpour

Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran.

Saeid Hazrati

Department of Agronomy, Faculty of Agriculture, Azarbaijan Shahid Madani University, Iran


Abstract

Stachys schtschegleevii Sosn. is an endemic medicinal plant belonging to the Lamiaceae family and mainly grown in North-western Iran. Drought stress is an important factor in reducing the yield of medicinal herbs. Water-stress tolerance involves subtle changes in cellular biochemistry. It appears to be the result of the accumulation of compatible solutes and of chemical compositions that can be rapidly induced by osmotic stress. For this purpose, the effect of different irrigation regimes (well-watered and irrigation after depletion of 40% and 70% of field capacity (FC)) were studied in S. schtschegleevii. The experiment was conducted in a randomized complete block design in three replications. The results showed that water-deficit had negative effects on shoot dry matter, relative water content, and photosynthetic pigments of the exposed plants. The essential oil (EO) content under water-deficit had an increasing trend. Water-deficit significantly increased total phenol content, proline, H2O2, and malondialdehyde contents. Linalool, β-pinene oxide, α-campholenal
and germacrene-D were the major compounds of essential oils (EOs) affected by water-deficit stress. Finally, although water deficiency reduces the shoot dry matter yield of the S. schtschegleevii, the accumulation of EO increased as a plant response to water-deficit stress.

Keywords:

α-campholenal, dry matter, growth, drought stress, medicinal plants

Adams, R.P., Sparkman, O.D. (2007). Review of identification of essential oilcomponents by gas chromatography/mass spectrometry. J. Am. Soc. Mass Spectrom., 18, 803–806. DOI: https://doi.org/10.1016/j.jasms.2007.01.001

Aimar, D., Calafat, M., Andrade, A., Carassay, L., Abdala, G., Molas, M. (2011). Drought tolerance and stress hormones: from model organisms to forage crops. In: Crops, Plants and Environment, Vasanthaiah, H.K.N., Kambiranda, D. (eds.). IntechOpen, London, 137–164. https://doi.org/10.5772/24279 DOI: https://doi.org/10.5772/24279

Aranjuelo, I., Molero, G., Erice, G., Avice, J. C., Nogués, S. (2011). Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicagosativa L.). J. Exp. Bot., 62, 111–123. DOI: https://doi.org/10.1093/jxb/erq249

Azhar, N., Hussain, B., Ashraf, M.Y., Abbasi, K.Y. (2011). Water stress mediated changes in growth, physiology and secondary metabolites of desiajwain (Trachys permumammi L.). Pak. J. Bot., 43(1), 15–19.

Baczek, K., Kosavowska,O., Jaroslaw, L., Przibil, Z. (2016). Accumulation of phenolic compounds in the purple betony herb (Stachys officinalis L.) originated from cultivation. Herbal Pol., 62, 7–16. DOI: https://doi.org/10.1515/hepo-2016-0007

Bartels, D., Sunkar, R. (2005). Drought and salt tolerance in plants. CRC Crit. Rev. Plant Sci., 24, 23–58. DOI: https://doi.org/10.1080/07352680590910410

British Pharmacopoeia Commission. (1993). British pharmacopoeia. HM Sationery Office.

Claussen, W. (2005). Proline as a measure of stress in tomato plants. Plant Sci., 168, 241–248. DOI: https://doi.org/10.1016/j.plantsci.2004.07.039

Cornic, G. (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends Plant Sci., 5, 187–188. DOI: https://doi.org/10.1016/S1360-1385(00)01625-3

Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M.Z. (2017). Crop production under drought and heat stress: plant responses and management options. Front Plant Sci., 8, 1147. https://doi.org/10.3389/fpls.2017.01147 DOI: https://doi.org/10.3389/fpls.2017.01147

Foyer, C.H., Noctor, G. (2000). Oxygen processing in photosynthesis: regulation and signaling. New Phytol., 146, 359–388. DOI: https://doi.org/10.1046/j.1469-8137.2000.00667.x

Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signal Behav., 7(11), 1456–1466. https://doi.org/10.4161/psb.21949 DOI: https://doi.org/10.4161/psb.21949

Hazrati, S., Rowshan, V., Hosseini, S.J., Sedaghat, M., Mohammadi, H. (2020). Variation of essential oil composition and antioxidant activity in aerial parts of Stachys Schtschegleevi Sosn at different growing stages. J. Essent. Oil-Bear. Plants., 23(5), 1054–1071. DOI: https://doi.org/10.1080/0972060X.2020.1843545

Hazrati, S., Tahmasebi-Sarvestani, Z., Modarres-Sanavy, S.A.M., Mokhtassi-Bidgoli, A., Nicola, S. (2016). Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiol. Biochem., 106, 141–148. DOI: https://doi.org/10.1016/j.plaphy.2016.04.046

Heath, R.L., Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125, 189–198. DOI: https://doi.org/10.1016/0003-9861(68)90654-1

Hoekstra, F.A., Golovina, E.A., Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends Plant Sci., 6, 431–438. DOI: https://doi.org/10.1016/S1360-1385(01)02052-0

Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S., Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front. Plant Sci., 9, 393. DOI: https://doi.org/10.3389/fpls.2018.00393

Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biol. Res., 52(39), 1–26. DOI: https://doi.org/10.1186/s40659-019-0246-3

Jaafar, H.Z.E., Ibrahim, M.H., Mohamad Fakri, N.F. (2012). Impact of soil field water capacity on secondary metabolites, phenylalanineammonia-lyase(PAL), malondialdehyde(MDA) and photosynthetic responses of Malaysian Kacip Fatimah (Labisiapumila Benth). Molecules., 17(6), 7305–7322. DOI: https://doi.org/10.3390/molecules17067305

Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., Sharma, A. (2020). The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Appl. Sci., 10(16), 5692. DOI: https://doi.org/10.3390/app10165692

Khalid, K.A. (2006). Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum sp.). Int. Agrophys., 20(4), 289–296.

Kliebenstein, D.J. (2013). Making new molecules-evolution of structures for novel metabolites in plants. Curr. Opin. Plant Biol., 16(1), 112–117. DOI: https://doi.org/10.1016/j.pbi.2012.12.004

Kumar, M., Patel, M.K., Kumar, N., Bajpai, A.B., Siddique, K.H., 2021. Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants. Int. J. Mol. Sci., 22(17), 9108. DOI: https://doi.org/10.3390/ijms22179108

Lichtenthaler, H.K., Wellburn, A.R. (1983). Determination of total carotenoids and chlorophylls a and b in leaf extracts in different solvents. Biochem. Soc. Trans., 11, 591–592. DOI: https://doi.org/10.1042/bst0110591

Lisar, S.Y., Rahman, I.M., Hossain, M.M., Motafakkerazad, R. (2012). Water stress in plants: causes, effects and responses. In: Water Stress, Rahman, I.M.M., Hasegawa, H., (eds.). InTech, Croatia, 1–14. DOI: https://doi.org/10.5772/39363

McDonald, S., Prenzler, P.D., Autolovich, M., Robard, S. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chem. Toxicol., 73, 73–84. DOI: https://doi.org/10.1016/S0308-8146(00)00288-0

Minaei, A., Hassani, A., Nazemiyeh, H., Besharat, S. (2019). Effect of drought stress on some morphophysiological and phytochemical characteristics of Oregano (Origanumvulgare L. ssp. gracile). Iran. J. Med. Aromat. Plants, 35(2), 252–265.

Mohammadi, H., Ghorbanpour, M., Brestic, M. (2018). Exogenous putrescine changes redox regulations and essential oil constituents in field-grown Thymus vulgaris L. under well-watered and drought stress conditions. Ind Crops Prod., 122, 119–132. DOI: https://doi.org/10.1016/j.indcrop.2018.05.064

Mohammadi, H., Saeedi, S., Hazrati, S., Brestic, M. (2021). Physiological and phytochemical responses of lemon balm (Melissa officinalis l.) to pluramin application and inoculation with pseudomonasfluorescens Pf-135 under water-deficit stress. Russ. J. Plant Physiol., 68, 909–922. https://doi.org/10.1134/S1021443721050125 DOI: https://doi.org/10.1134/S1021443721050125

Mozaffarian, V.A. (1966). Dictionary of Iranian plant names. Farhang Moaser, Tehran, 523.

Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., Novitskaya, L., Foyer, C.H. (2002). Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration. Ann. Bot., 89, 841–850. DOI: https://doi.org/10.1093/aob/mcf096

Pérez-Gálvez, A., Viera, I., Roca, M. (2020). Carotenoids and chlorophylls as antioxidants. Antioxidants, 9(6), 505. DOI: https://doi.org/10.3390/antiox9060505

Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M., Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants, 10(2), 277. DOI: https://doi.org/10.3390/antiox10020277

Sayyad-Amin, P., Jahansooz, M.R., Borzouei, A., Ajili, F. (2016). Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress. J. Biol. Phys., 42(4), 601–620. https://doi.org/10.1007/s10867-016-9428-1 DOI: https://doi.org/10.1007/s10867-016-9428-1

Slama, I., Ghnaya, T., Hessini, K., Messedi, D., Savoure, A., Abdelly, C. (2007). Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environ. Exp. Bot., 61, 10–17. DOI: https://doi.org/10.1016/j.envexpbot.2007.02.004

Smirnoff, N. (1993). The role of active oxygen in response of plants to water deficit and desiccation. New Phytol., 125, 27–58. DOI: https://doi.org/10.1111/j.1469-8137.1993.tb03863.x

Sonboli, A., Salehi, P., Ebrahimi, S.N. (2005). Essential oil composition and antibacterial activity of the leaves of Stachys schtschegleevii from Iran. Chem. Nat. Compd., 41(2), 171–174. DOI: https://doi.org/10.1007/s10600-005-0105-z

Szabó, K., Zubay, P., Németh-Zámboriné, É. (2020). What shapes our knowledge of the relationship between water deficiency stress and plant volatiles? Acta Physiol. Plant., 42, 130. DOI: https://doi.org/10.1007/s11738-020-03120-1

Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M.,Yamaguchi-Shinozaki, K., Shinozaki, K. (2002). Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J., 29, 417–426. DOI: https://doi.org/10.1046/j.0960-7412.2001.01227.x

Thomas, M.T., Gausling, T. (2000). Morphologicaland physiological responses of oak (Quercuspetraea and Q. robur) to moderate drought. Ann. For. Sci., 57, 325–333. DOI: https://doi.org/10.1051/forest:2000123

Velikova, V., Yordanov, I., Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci., 151, 59–66. DOI: https://doi.org/10.1016/S0168-9452(99)00197-1

Verma, N., Shukla, S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants, 2(4), 105–113. DOI: https://doi.org/10.1016/j.jarmap.2015.09.002

Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3), 50. DOI: https://doi.org/10.3390/horticulturae7030050

Zobayed, S.M.A., Afreen, F., Kozai, T. (2007). Phytochemical and physiological changes in the leaves of St. John’s wort plants under a water stress condi­tion. Environ. Exp. Bot., 59(2), 109–116. DOI: https://doi.org/10.1016/j.envexpbot.2005.10.002


Published
2022-04-29



Hamid Mohammadi 
Department of Agronomy College of Agriculture, Azarbaijan Shahid Madani University, Iran
Ahmad Aghaee 
Department of Biology, Faculty of Science, University of Maragheh, Iran
Parya Pormohammad 
Department of Agronomy, Faculty of Agriculture, Azarbaijan Shahid Madani University, Iran
Mansour Ghorbanpour 
Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran.
Saeid Hazrati 
Department of Agronomy, Faculty of Agriculture, Azarbaijan Shahid Madani University, Iran



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)