Chemical composition phenolic, antioxidant, and bio-herbicidal properties of the essential oil of rosemary (Rosmarinus officinalis L.)

Incilay Gokbulut

Inonu University, Engineering Faculty, Food Engineering Department, Malatya, Turkey

Yucel Karaman

Malatya Turgut Ozal University, Agricultural Faculty, Plant Protection Department, Malatya, Turkey

Ayse Ozlem Tursun

Malatya Turgut Ozal University, Battalgazi Vocational School, Malatya, Turkey


The essential oil yield was obtained from the rosemary plant at the rate of 0.93 mL/100 g, and 1,8-cineol, camphor, isoborneol, α-pinene were identified as the highest component. While the total phenolic content in the essential oil of the rosemary plant was 13.87 mg GAE/g (DW) and the IC50 value was 15.02 μg extract mL–1, the DPPH antioxidant activity value was obtained as 38.43%. For the investigation of herbicidal effect of the essential oils on seed germination , different doses (0.5, 1.0, 2.0, 4.0, 8.0 and 16.0 μL Petri–1) were used on 2 crop plants (pepper and wheat) and 4 weeds: (Amaranthus palmeri S. Wats.), (Amaranthus albus L.), (Avena fatua L.) and (Sinapis arvensis L.). It was determined that as the applied amount of essential oil increased, the germination of the seeds was more suppressed. The highest effect of essential oil was detected in 16 μl Petri–1 dose application in all treated seeds.


rosemary essential oil, DPPH, phenol, herbicidal effect

Arminante, F., De Falco, E., De Feo, V., De Martino, L., Mancini, E., Quaranta, E. (2006). Allelopathic activity of essential oils from Mediterranean Labiatae. I International Symposium on the Labiatae: Advances in Production, Biotechnology and Utilisation, 22–25 February, Sanremo, Italy, 347–360. DOI:

Atak, M., Mavi, K., Uremis, I. (2016). Bio-herbicidal effects of oregano and rosemary essential oils on germination and seedling growth of bread wheat cultivars and weeds. Romanian Biotechnol. Lett., 21(1), 11149–11159.

Azirak, S., Karaman, S. (2008).Allelopathic effect of some essential oils and components on germination of weed species, Acta Agric. Scan. B Soil Plant Sci., 58(1), 88–92. DOI:

Bányai, E.S., Tulok, M.H., Hgedűs, A., Renner, C., Varga, I.S. (2003). Antioxidant effect of various rosemary (Rosmarium officinalis L.) clones. Acta Biol. Szeged., 47(1–4), 111–113.

Ben Kaab, S., Rebey, I.B., Hanafi, M., Berhal, C., Fauconnier, M.L., De Clerck, C., Ksouri, R. Jijakli, H. (2019). Rosmarinus officinalis essential oil as an effective antifungal and herbicidal agent. Span. J. Agric. Res., 17(2), e1006. DOI:

Dapkevicius, A., Venskutonis, R., van Beek, T.A., Linssen, J.P.H. (1998). Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania. J. Sci. Food Agric., 77(1), 140–146.<140::AID-JSFA18>3.0.CO;2-K DOI:<140::AID-JSFA18>3.0.CO;2-K

El Mahdi, J., Tarraf, W., Ruta, C., Piscitelli, L., Aly, A., De Mastro, G. (2020). Bio-herbicidal potential of the essential oils from different Rosmarinus officinalis L. chemotypes in laboratory assays. Agronomy, 10(6), 775. DOI:

Erdoğan, E.A. (2012). Using fields of plant essential oils and potential genetic effects. Lokman Hekim J., 2(2), 21–24.

Hanana, M., Mansour, M.B., Algabr, M., Amri, I., Gargouri, S., Adberrahmane, R., Jamoussi, B., Hamrouni, L. (2017). Potential use of essential oils from four Tunisian species of Lamiaceae: Biological alternative for fungal and weed control. Rec. Nat. Produc., 11(3), 258–269.

Hazrati, H., Saharkhiz, M.J., Moein, M., Khoshghalb, H. (2018). Phytotoxic effects of several essential oils on two weed species and tomato. Biocatal. Agric. Biotechnol., 13, 204–212. DOI:

Hussain, A.I., Anwar, F., Chatha, S.A.S., Jabbar, A., Mahboob, S., Nigam, P.S. (2010). Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Brazilian J. Microbiol., 41(4), 1070–1078. DOI:

Jordan, M.J., Martínez, R.M., Goodner, K.L., Baldwin, E.A., Sotomayor, J.A. (2006). Seasonal variation of Thymus hyemalis Lange and Spanish Thymus vulgaris is L. essential oils composition. Ind. Crops Prod., 24, 253–263. DOI:

Marino, M., Bersani, C., Comi, G. (2001). Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Int. J. Food Microbiol., 67(3), 187–195. DOI:

Nadia, Z., Rachid, M. (2016). Antioxidant activity of flavonoids isolated from Rosmarinus officinalis L. J. Plant Sci. Res., 3(1), 142–148.

Önenç, S.S., Açıkgöz, Z., Kirkpinar, F., Küme, T., Tuğalay, C.S., Bayraktar, H.O. (2016). Chemical compositions and antioxidant activities of the essential oils of some medicinal and aromatic plants. J. Animal Produc., 57(2), 7–14.

Peng, Y., Yuan, J., Liu, F., Ye, J. (2005). Determination of active components in rosemary by capillary electrophoresis with electrochemical detection. J. Pharm. Biomed. Anal., 39(3–4), 431–437. DOI:

Proestos, C., Komaitis, M. (2008). Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT Food Sci. Technol. 41, 652–659. DOI:

Rahbardar, M.G., Amin, B., Mehri, S., Mirnajafi-Zadeh, S.J., Hosseinzadeh, H. (2017). Antiinflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed. Pharmacother. 86, 441–449. DOI:

Rahman, L., Kukerja, A.K., Singh, S.K., Singh, A., Yadav, A., Khanuja, S.P.S. (2007). Qualitative analysis of essential oil of Rosmarinus officinalis L. cultivated in Uttaranchal hills, India. J. Spices Arom. Crops., 16(1), 55–57.

Ramakrishna, A., Ravishankar, G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav., 6(11), 1720–1731. DOI:

Sanchez-Moreno, C., Larrauri, J.A., Saura-Calixto, F.A. (1998). A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric., 76(2), 270–276.<270::AID-JSFA945>3.0.CO;2-9 DOI:<270::AID-JSFA945>3.0.CO;2-9

Singleton, V., Rossi, J. (1965). Colorimetry of total phenolic compounds with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16, 144–158.

Tural, S., Turhan, S. (2017). Essential oils and their mixtures antimicrobial and antioxidant properties of thyme (Thymus Vulgaris L.), rosemary (Rosmarinus officinalis L.) and laurel (Lauris nobilis L.). J. Food, 42(5), 588–596. DOI:

Tavassoli, S.K., Mousavi, M., Djomeh, Z.E., Razavi, S.H. (2011). Chemical composition and evaluation of antimicrobial properties of Rosmarinus officinalis L. essential oil. Afr. J. Biotechnol., 10(63), 13895–13899. DOI:

Ultee, A., Bennik, M.H.J., Moezelaar, R. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol., 68(4), 1561–1568. DOI:

Wang, W., Wu, N., Zu, Y., Fu, Y. (2008). Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chem., 108(3), 1019–1022. DOI:

Yasar, A., Karaman, Y., Gokbulut, I., Tursun, A.O., Tursun, N., Uremis, I., Arslan, M. (2021). Chemical composition and herbicidal activities of essential oil from aerial parts of Origanum hybrids grown in different global climate scenarios on seed germination of Amaranthus palmeri. J. Essent. Oil. Bear. Plants., 24(3), 603–616. DOI:

Yazici, S.O., Askin, B., Kaynarca, G.B. (2020). Determination of antioxidant properties and composition of Rosemary and Thyme essential oils. Turkish J. Agric. Food Sci. Technol., 8(10), 2105–2112. DOI:

Yeddes, W., Wannes, W.A., Hammami, M., Smida, M., Chebbi, A., Marzouk, B., Tounsi, M.S. (2018). Effect of environmental conditions on the chemical composition and antioxidant activity of essential oils from Rosmarinus officinalis L. growing wild in Tunisia. J. Essent. Oil. Bear. Plants., 21(4), 972–986. DOI:

Yildirim, E.D. (2018). The effect of seasonal variation on Rosmarinus officinalis (L.) essential oil composition. Int. J. Agric. Wildlife Sci. (IJAWS), 4(1), 33–38. DOI:

Zaouali, Y., Hnia, C., Rim, T., Mohamed, B.(2013). Changes in essential oil composition and phenolic fraction in Rosmarinus officinalis L. var. typicus Batt. organs during growth and incidence on the antioxidant activity. Ind. Crops Prod., 43(1), 412–419. DOI:



Incilay Gokbulut 
Inonu University, Engineering Faculty, Food Engineering Department, Malatya, Turkey
Yucel Karaman 
Malatya Turgut Ozal University, Agricultural Faculty, Plant Protection Department, Malatya, Turkey
Ayse Ozlem Tursun 
Malatya Turgut Ozal University, Battalgazi Vocational School, Malatya, Turkey



Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.