CONTENT OF MACRO- AND MICRONUTRIENTS IN CHITOSAN TREATED FREESIA (Freesia Eckl. ex Klatt) LEAVES

Piotr Żurawik

West Pomeranian University of Technology in Szczecin

Agnieszka Żurawik

West Pomeranian University of Technology in Szczecin

Paulina Kukla

West Pomeranian University of Technology in Szczecin


Abstract

Freesia grown under cover to be marketed as cut flower is highly sensitive to substrate temperatures exceeding 15–18°C. However, freesia varieties of Beach group are especially attractive plants that may be easily cultivated under cover and do not require substrate cooling. Experiments were conducted in summer and fall of 2011 and 2012 in an unheated plastic tunnel. Planting material consisted of daughter bulbs of ‘Summer Beach’ freesia. The plants were treated with chitosan with a molecular weight of 8000 g∙dm–3. Experimental variants involved methods of chitosan application (watering vs. spraying), its concentration (0.2 vs. 0.4%) and frequency of application (7 vs. 14 days). During the flowering period and at the end of vegetation, freesia leaves were collected to determine the content of following micro- and macronutrients: N, P, K, Ca, Mg, Zn, Cu, Mn, and Fe. The leaves collected at the end of vegetation season contained more P, K, Ca, Fe, Mn, and Zn than those collected during flowering. The content of Mg and Cu was similar in both cases, but N level was lower at the end of vegetation. Irrespective of experimental variant, leaves of all plants treated with chitosan accumulated more N, P, Ca, Cu, Fe and Mn and less Zn during the entire vegetation season than the control ones. At the end of the vegetation season, plants sprayed with chitosan revealed higher concentration of N, P, Ca, Mg, Fe, and Zn, and lower concentration of K, Cu, and Mn than those watered with the investigated compound. No clear patterns of micro- and macronutrient accumulation depending on chitosan concentration were observed. Plants treated with 0.2% chitosan contained more P, K, Mg, Mn, and Zn than those exposed to its two times higher concentration. A contrary response was observed for the leaf accumulation of N and Fe.

Keywords:

application method, concentration, frequency of application, ‘Summer Beach’

Algam, S.A.E., Xie, G., Li, B., Yu, S., Su, T., Larsen, J. (2010). Effects of paenibacillus strains on plant growth promotion and control Ralstonia wilt in tomato. J. Plant Pathol., 92(3), 593–600.

Babel, S., Kurniwan, T.A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water. J. Hazard. Mater., 97, 219–243.

Bassi, R., Prasher, S.O., Simpson, B.K. (2000). Extraction of metals from a contaminated sandy soil using citric acid. Environ. Prog., 19(4), 275–282.

Bautista-Baños, S., Hernández-Lauzardo, A.N., Velázquez-Del Valle, M.G., Hernández-López, M., Ait Barka, E., Bosquez-Molina, E., Wilson, C.L. (2006). Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot., 25(2), 108–118.

Becker, T., Schlaak, M., Strasdeit, H. (2000). Adsorption of nickel, zinc and cadmium cation by new chitosan derivatives. React. Funct. Polym., 44(3), 289–298.

Bennewitz, E., Hlusek, J. (2006). Effect of application of two biopreparations on the nutritional status, vegetative and generative behavior of ‘Jonagold’ apple trees. Acta Hortic., 721, 129–135.

Chen, C., Gao, Z., Qiu, X., Hu, S. (2013). Enhancement of the controlled-release properties of chitosan membranes by crosslinking with suberoyl chloride. Molecules, 18, 7239–7252.

El Hadrami, A., Adam, L.R., El Hadrami, I.E., Daayf, F. (2010). Chitosan in plant protection. Mar. Drugs, 8, 968–987.

El-Tanahy, A.M.M., Mahmoud, A.R., Abde-Mouty, M.M., Ali, A.H. (2012). Effect of chitosan doses and nitrogen sources on the growth, yield and seed quality of cowpea. Aust. J. Basic Appl. Sci., 6(4), 115–121.

Górnik, K., Grzesik, M., Romanowska-Duda, B. (2008). The effect of chitosan on rooting of grapevine cuttings and on subsequent plant growth under drought and temperature stress. J. Fruit Ornam. Plant Res., 16, 333–343.

Iriti, M., Picchi, V., Rossoni, M., Arasca, S.G., Ludwig, N., Gargano, M., Faoro, F. (2009). Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ. Exp. Bot., 66, 493–500.

Kamari, A., Pulford, I.D., Hargreaves, J.S.J. (2012). Metal accumulation in Lolium perenne and Brassica napus as affected by application of chitosans. Int. J. Phytoremediat., 14(9), 894–907.

Kananont, N., Pichyangkura, R., Chanprame, S., Chadchawan, S., Limpanavech, S. (2010). Chitosan specificity for the in vitro seed germination of two Dendrobium orchids (Asparagales: Orchidaceae). Sci. Hortic., 124(2), 239–247.

Khorrami, M., Najafpour, G.D., Younesi, H., Hosseinpour, M.N. (2012). Production of chitin and chitosan from shrimp shell in batch culture of Lactobacillus plantarum. Chem. Biochem. Eng. Q., 26(3), 217–223.

Limpanavech, P., Chaiyasuta, S., Vongpromek, R., Pichyangkura, R., Khunwasi, C., Chadchawan, S., Latrakul, P., Bunjongrat, R., Chaidee, A., Bangyeekhun, T. (2008). Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid. Sci. Hortic., 116(1), 65–72.

Mahdavi, B., Sanavy, S.A.M.M., Aghaalikhani, M., Sharifi, M., Dolatabadian, A. (2011). Chitosan improves osmotic potential tolerance in safflower (Carthamnus tinctorius) seedlings. J. Crop Improv., 25(6), 728–741.

Mucha, M. (2010). Chitozan wszechstronny polimer ze źródeł odnawialnych. Wydaw. Nauk. Techn., Warszawa, 17–21.

Obsuwan, K., Sawangsri, K., Uthairatanakij, A. (2010). Influence of foliar chitosan sprays on growth of mokara and phalaenopsis seedlings. Acta Hortic., 867, 295–302.

Ohta, K., Morishita, S., Suda, K., Kobayashi, N., Hosoki, T. (2004). Effects of chitosan soil mixture treatment in the seedling stage on the growth and flowering of several ornamental plants. J. Jpn. Soc. Hortic. Sci., 73(1), 66–68.

Ostrowska, A., Gawliński, S., Szczubiałka, Z. (1991). Metody analizy i oceny właściwości gleb i roślin. Instytut Ochrony Środowiska, Warszawa, 298–334.

Pérez Quinones, J., Szopko, R., Schmidt, C., Peniche Covas, C. (2011). Novel drug systems: Chitosan conjugates covalently attached to steroids with potential anticancer and agrochemical activity. Carbohydr. Polym., 84(3), 858–864.

Rodríguez, A.F., Rodríguez, A.T., Ramírez, M.A., Rivero, D., Cabrera, J.C., Costales, D., Cruz, A., González, L.G., Jménez, M.C., Hernández, L.I., Pena, D.G., Márquez, R. (2010). Chitosans as bioactive macromolecules to protect conomically relevant crops from their main pathogens. Biotechnol. Appl., 27(4), 305–309.

Salachna, P., Bartkowiak, A. (2008). Wpływ miejsca uprawy i chitozanu o różnym ciężarze cząsteczkowym na wzrost i plonowanie frezji odmiany ‘Lisa’. Część I. Cechy morfologiczne i kwitnienie. Zesz. Probl. Post. Nauk Roln., 525, 367–374.

Salachna, P., Grzeszczuk, M., Soból, M. (2017). Effects of chitooligosaccharide coating combined with selected ionic polymers on the stimulation of Ornithogalum saundersiae growth. Molecules, 22, 1903.

Shehta, S.A., Fawzy, Z.F., El-Ramady, H.R. (2012). Response of cucumber plants to foliar application of chitosan and yeast under greenhouse conditions. Aust. J. Basic Appl. Sci., 6(4), 63–71.

Sheikha, S.A.A.K., AL-Malki, F.M. (2011). Growth and chlorophyll responses of bean plants to the chitosan applications. Eur. J. Sci. Res., 50(1), 124–134.

Sukwattanasinitt, M., Klaikherd, A., Skulnee, K., Aiba, S. (2001). Chitosan as releasing device for 2,4-D herbicide. In.: Chitin and chitosan in life science, Uragami, T., Kurita, K., Fukamizo, T. (eds.). Yamaguchi, Japan, 142–143.

Winkler, A.J., Dominguez-Nuñez, J.A., Aranaz, I., Poza-Carrión, C., Ramonell, K., Shauna Somerville, S., Berrocal-Lobo, M. (2017). Short-chain chitin oligomers: Promoters of plant growth. Mar. Drugs, 15(2), 40.

Wojcieszczuk, T., Startek, L., Tyszkiewicz, K. (2000). Wpływ podłoża na skład chemiczny liści pięciu odmian frezji ogrodowej. Rocz. AR Pozn. 323, Ogrodnictwo, 31, 195−201.

Wu, L., Liu, M., Liang, R. (2008). Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and waterretention. Bioresour. Technol., 99, 547–554.

Zou, P, Tian, X, Dong, B, Zhang, C. (2017). Size effects of chitooligomers with certain degrees of polymerization on the chilling tolerance of wheat seedlings. Carbohydr. Polym., 160, 194–202.

Żurawik, P. (2013). Wpływ suszu krewetkowego i chitozanu oraz metod uprawy na wzrost, rozwój, wartość dekoracyjną i plon bulw potomnych frezji (Freesia Eckl. ex Klatt). Wyd. ZUT Szczecin, 94–98.

Żurawik, P., Bartkowiak, A. (2009).Wpływ chitozanu na cechy morfologiczne frezji z grupy Beach. Zesz. Probl. Post. Nauk Roln., 539, 831–837.

Żurawik, P., Żurawik, A., Kukla, P., Dobrowolska, A. (2017). Morphological traits, decorative value and yield of corms of freesia (Freesia Eckl. ex Klatt) depending on the applied chitosan. Acta Sci. Pol. Hortorum Cultus, 16(1), 73–83.

Download

Published
2018-12-20



Piotr Żurawik 
West Pomeranian University of Technology in Szczecin
Agnieszka Żurawik 
West Pomeranian University of Technology in Szczecin
Paulina Kukla 
West Pomeranian University of Technology in Szczecin



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.