The optimization growth of Dracocephalum forrestii in RITA® bioreactor, and preliminary screening of the biological activity of the polyphenol rich extract

Izabela Weremczuk-Jeżyna

Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland

Liwia Lebelt

Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland

Dorota Piotrowska

Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland

Weronika Gonciarz

Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland

Magdalena Chmiela

Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland

Izabela Grzegorczyk-Karolak

Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland


Dracocephalum forrestii is a medicinal plant growing in China. The aim of the present study was to large-scale cultivation of D. forrestii transformed shoots in a temporary immersion system based on previously-optimized Murashige and Skoog (MS) medium supplemented with 0.5 mg/L N-benzyl-9-(2-tetrahydropyranyl)-adenine (BPA) and 0.2 mg/L indole-3-acetic acid (IAA) and physical (under blue LED) conditions. Shoot proliferation, and biomass and secondary metabolite accumulation in the shoots were assessed after a three-week growth period in a RITA® bioreactor. The levels of polyphenols in four types of extract (hydromethanolic extracts – mixtures with a 20%, 50%, and 80% methanol content and infusion) were determined using high-performance liquid chromatography (HPLC). Within three weeks, the culture increased its biomass 283-fold, with a proliferation ratio of 40.5 shoots or/and buds per explants. The most efficient solvent for extraction of phenolic compounds from raw material turned out to be 80% methanol solution; the highest polyphenol content was 40 mg/g DW (dry weight) with acacetin rhamnosyl-trihexoside (12.97 mg/g DW) and rosmarinic acid (10.68 mg/g DW) predominating. The intensive growth of the biomass of the culture allowed 570 mg of polyphenolic compounds to be obtained per liter of the medium. The antioxidant potential of extract of D. forrestii shoots was evaluated using three free radical-scavenging tests, and the inhibition of lipid peroxidation assay. In the study, the cytotoxic, antibacterial and antifungal potentials of the extract were also determined.


acacetin and apigenin glucoside, biological potential, large-scale cultivation, rosmarinic acid, RITA® bioreactor, transformed root culture

Abedini, A., Roumy, V., Mahieux, S., Biabiany, M., Standaert-Vitse, A., Rivière, C., Sahpaz, S., Bailleul, F., Neut, C., Hennebelle, T. (2013). Rosmarinic acid and its methyl ester as antimicrobial components of the hydromethanolic extract of Hyptis atrorubens Poit. (Lamiaceae). Evid. Based Complement. Alternat. Med., 604536. 10.1155/2013/604536 DOI:

Ahmadian, M., Babaei, A., Shokri, S., Shakrir, H. (2017). Micropropagation of carnation (Dianthus caryophyllus L.) in liquid medium by temporary immersion bioreactor in comparison with solid culture. J. Genet. Eng. Biotechnol., 15(2), 309–315. DOI:

Anwar, S., Shamsi, A., Shahbaaz, M., Qeen, A., Khan, P., Hasan, G.M., Islam, A., Alajmi, M.F., Hussain, A., Ahmad, F., Hassan I. (2020). Rosmarinic acid exhibits anticancer effects via MARK inhibition. Sci. Rep., 10, 10300. DOI:

Aprotosaie, A.C., Mihai, C.T., Vochita, G., Rotinberg, P., Trifan, A., Luca, S.A., Petreus, T., Gille, E., Miron, A. (2016). Antigenotoxic and antioxidant activities of a polyphenolic extract from European Dracocephalum moldavica L. Ind. Crops Prod., 79, 248–257. DOI:

Aragón, C.E., Sánchez, C., Gonzalez-Olmedo, J., Escalona, M., Carvalho, L.K., Amâncio, S. (2014). Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled during in vitro growth and acclimatization. Biol. Plant., 58, 29–38. DOI:

Blank, D.E., Alves, G.H., Nascente, P., Freitag, R.A., Clef, M.B. (2020). Bioactive compounds and antifungal activities of extracts of Lamiaceae species. J. Agric. Chem. Environ., 9(3), 85–96. DOI:

Businge, E., Trifanova, A., Schneider, C., Rödel Egertdotter, U. (2017). Evaluation of new temporary immersion system for micropropagation of cultivars of Eucalyptus, Birch and Fir. Forests, 8(6), 196–205. DOI:

Cai, Y., Luo, Q., Sun, M., Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci., 74(17), 2157–2184. DOI:

Chaudhary, A., Sharma, S., Mittal, A., Gupta, S., Dua, A. (2020) Phytochemical and antioxidant profiling of Ocimmum sanctum. Food Sci. Technol., 57, 3852–3863. DOI:

Chaves, J.O., Carrêa de Souza, M., Capelasso da Silva, L., Lachos-Perez, D., Torres-Mayanga, P.C., da Faresca Machado, A.P., Forster-Cameiro, T., Vázquez-Espinosa, M., González-de-Peredo, A.V., Barbero, G., Rostagno, M.A. (2020). Extraction of flavonoids from natural sources using modern techniques. Front. Chem., 8, 507887. DOI:

DeRango-Adem, E.F., Blay, J. (2021). Does oral apigenin have real potential for a therapeutic effect in the context of human gastrointestinal and other cancers? Front. Pharmacol., 12, 681477. DOI:

Dhanani, T., Shah, S., Gajbhiye, N.A., Kumar, S. (2017). Effect of extraction methods an yield phytochemical constituents and antioxidant activity of Withania somnifera. Arab. J. Chem., 10(1), S1103–S1199. DOI:

Ekambram, S.P., Perumal, S.S., Balakrishnom A., Marappan, N., Gajendran, S.S., Viswannathan, V. (2016). Antibacterial synrgy between rosmarinic acid and antibiotics against methilicin resistant Saphylococcus aureus. J. Intercult. Ethnopharmacol., 5(4), 358–363. DOI:

Elansary H.O., Szopa, A., Kubica P., Ekiert, H., Al-Mana F.A., Al-Yafrsi, M.A. (2020). Antioxidant and biological activities of Acacia saligna and Lawsonia inermis natural populations. Plants, 9(7), 908–925. DOI:

Espinosa-Leal, C.A., Puente-Garza, CA., Gracía-Lara, S. (2018). In vitro plant tissue culture: Means for production of biological active compounds. Planta, 248, 1–18. DOI:

Georgiev, V., Ivanov, I., Berkov, S., Pavlov, A. (2014a). Temporary immersion systems for Amaryllidaceae alkaloids biosynthesis by Pancratium maritimum L. shoot culture. J. Plant. Biochem. Biotechnol., 23, 389–398. DOI:

Georgiev, V., Schumann, A., Pavlow, A., Bley, T. (2014b). Temporary immersion system in plant biotechnology. Eng. Life. Sci., 14(6), 607–621. DOI:

Grzegorczyk-Karolak, I., Staniewska, P., Lebelt, L., Piotrowska, D.G. (2022). Optimization of cultivation conditions of Salvia viridis L. shoots in the Plantform bioreactor to increase polyphenol production. Plant Cell Tissue Organ Cult., 149, 269–280. DOI:

Grzegorczyk-Karolak, I., Kiss, A.K. (2018). Determination of the phenolic profile and antioxidant properties of Salvia viridis L. shoots: a comparison of aqueous and hydroethanolic extracts. Molecules, 23(6), 1468–1495. DOI:

Grzegorczyk-Karolak, I., Kuźma Ł., Wysokińska, H. (2015). The effect of cytokinin on shoot proliferation, secondary metabolite production and antioxidant potential in shoot cultures of Scutellaria alpina. Plant Cell Tissue Organ Cult., 122, 699–708. DOI:

Hashim, N., Shaari, A.R., Mamat, A.S., Ahmad, S. (2016). Effect of differences methanol concentration and extraction time on the antioxidant capacity, phenolics content and bioactive constituents of Orthosiphon stamineus extract. MATEC Web Conf., 78, 01004. DOI:

Heydari, P., Yavari, M., Adibi, P., Asghari, G., Ghanadian, S.M., Dida, G., Khawesipour, F. (2019). Medicinal properties and active constituents of Dracocephalum kotschyi and significance in Iran: a systematic review. Evid. Based Complement. Altern. Med., 94655309. DOI:

ISO 10993-5:2009 (2009). Biological evaluation of medical devices – Part. 5: Tests for in vitro cytotoxicity. ISO, Geneva, Switzerland.

Kamali, M., Khosroyar, S., Mohammadi, A. (2015). Antibacterial activity of various extracts from Dracocephalum kotschyi against food pathogenic microorganisms. Int. J. Pharm. Tech. Res., 8(9), 158–163.

Kamizela, A., Gawdzik, B., Urbaniak, M., Lechowicz, Ł., Białońska, A., Kutniewska, S., Gonciarz, W., Chmiela, M. (2019). New γ-halo-δ-lactones and δ-hydroxy-γ-lactones with strong cytotoxic activity. Molecules, 24(10), 1875. DOI:

Khadije, R.K., Jahantigh, H.R., Bagheri, R., Kehkhaie, K.R. (2017). The effects of the ethanol extract of Dracocephalum moldavica (Badrashbu) against strains antibiotic-resistans Escherichia coli and Klebsiella pneumonia. Int. J. Infect., 5(1), e65295. 10.5812/iji.65295 DOI:

Kang, K.-R., Kim, J.-S., Kim, T.-H., Seo, J.-Y., Park, J.-H., Lim, J.-W., Yu, S.-K., Kim, H.-J., Shin, S.-H., Park, B.-R., Kim, C.S., Kim D.K. (2020). Inhibition of cell growth and induction of apoptosis by acacetin in FaDu human pharyncal carcinoma cell. Int. J. Oral Biol., 45, 107–114. DOI:

Kostić, M., Zlatković, B., Miladinović, B., Živanovič, S., Mihajilov-Krstev, T., Palvlovič, D., Kitić, D. (2015). Rosmarinic acid levels, phenolic contents, antioxidant and antimicrobial activities from Salvia verbenaca L. obtain with different solvents and procedures. J. Food Biochem., 39(2), 199–208. DOI:

Krzemińska, M., Owczarek, A., Gonciarz, W., Chmiela, M., Olszewska, M.A., Grzegorczyk-Karolak, I. (2022). The antioxidant, cytotoxic and antimicrobial potential of phenolic acids- enriched extract of elicitated hairy roots of Salvia bulleyana. Molecules, 27(3), 992. DOI:

Kunakhonnuruk, B., Inthima, P., Kongbangkerd, A. (2019). In vitro propagation of rheophytic orchid, Epipactis flava Seidenf. – a comparison of semi-solid, continuous immersion and temporary immersion systems. Biology, 8(4), 72. DOI:

Lee, J.S., Lee, C.A., Kim, Y.H., Yun, S.J. (2014). Shorter wavelength blue light promotes growth of green perilla (Perilla frutescens). Int. J. Agric. Biol., 16, 1172–1182.

Li, G.-P., Zhao, J.-F., Yang, L.-J., Yang, X.-D., Li, L. (2007). New monoterpenoids from Dracocephalum forrestii aerial parts. Chem. Inform., 38(50). DOI:

Li, S.-M., Yang, X.-W., Li, Y.-L., Shen, Y.-H., Feng, L., Wang, Y.-H., Zeng, H.-W., Liu, X.-H., Zhang, C.-S., Long, C.-L., Zhang, W.-D. (2009). Chemical constituents of Dracocephalum forrestii. Planta Med., 75(15), 1591–1596. DOI:

Li, G.-P., Zhao, J.-F., Yang, L.-J., Yang, X.-D., Li, L. (2006). Three new triterpenoids from Dracocephalum forrestii. Helv. Chim. Acta, 89(12), 3018–3022. DOI:

Lyam, P.T., Musa, M.L., Jamaleddine, Z.O., Okere, U.A., Odofin, W.T. (2012). The potential of temporary immersion bioreactors (TIBs) in meeting crop production demand in Nigeria. J. Biol. Life Sci., 3(1), 66–86. DOI:

Manivannan, A., Soundararajan, P., Halimah, N., Ko, C.H., Jeong, B.R. (2015). Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Hortic. Environ. Biotechnol., 56, 105–113. DOI:

Meng, L., Gui, X., Yun, Z. (2019). A new method to extract oridonin and rosmarinic acid simultaneously from Rabdosia rubescens. Int. J. Food Eng., 15(9), 20190013. DOI:

Moore, J., Yousef, M., Tsiani, E. (2016). Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. Nutrients, 18(11), 731. DOI:

Moradi, H., Ghavam, M., Tavili, A. (2020). Study of antioxidant activity and some herbal compounds of Dracocephalum kotschyi Boiss. In different ages of growth. Biotechnol. Rep., 25, e0048. DOI:

Munteanu, I.G., Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: a review. Int. J. Mol. Sci., 22(7), 3380–3410. DOI:

Muniyandi, K., George, E., Mudili, V., Kalagatur, N.K., Anthuvan, A.J., Krishna, K., Thangaraj, P., Natarajan, G., (2017). Antioxidant and anticancer activities of Plectranthus stoksci Hook. f. leaf and stem extracts. Agric. Nat. Res., 51(2), 63–77. DOI:

Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant., 15(3), 473–449. DOI:

Nadeem, M., Imran, M., Gondal, T.A., Imran, A., Shahbaz, M., Amir, R.M., Sajid, M.W., Qaisrani, T.B., Atif, M., Hussain, G., Salehi, B., Ostrander, E.A., Martorell, M., Sharifi-Rad, J., Cho, W.C., Martins, N. (2019). Therapeutic potential of rosmarinic acid: a comprehensive review. Appl. Sci., 9(15), 3139. DOI:

Olennikov, D.N., Chirikova, N.K., Okhlopkova, Z.M., Zulfuganov, I.S., (2013). Chemical composition and antioxidant activity of Tánara Ótó (Dracocepahlum palmatum Stephan), a medicinal plant used by North-Yakutian nomads. Molecules, 18(11), 14105–14121. DOI:

Pan, M.-H., Lai, C.-S., Hsu, P.-C., Wang, Y.-J. (2005). Acacetin induces apoptosis in human gastric carcinoma cells accompanied by activation of caspase cascades and production of reactive oxygen species. J. Agric. Food Chem., 53(3), 620–630. DOI:

Picos-Solas, M.A., Heredia, J.B., Leyva-López, N., Ambriz-Pérez, D.L., Gutiérrez-Grijalva, E.P. (2021). Extraction process affect the composition and bioavailability of flavones from Lamiaceae plants: Comprehensive review. Processes, 9(9), 1675. DOI:

Ray, J.X., Chaurasia, O.P., Vaipayee, P.K., Murugan, M.P., Bala, S.S. (2009). Antioxidative activity and phytochemical investigation on a high altitude medicinal plant Dracocephalum heterophyllum Benth. Pharmacon. J., 1, 246–251.

Scheckel, K.A., Degner, S.C., Romagnolo, D.F., (2008). Rosmarinic acid antagonizes activator protein-1-dependent activation of cyclooxygenase-2 expression in human cancer and nonmalignant cell lines. J. Nutr., 138(11), 2098–2105. DOI:

Shaabani, M., Mousavi, S.H., Azizi, M., Ashraf Jafari, A. (2020). Cytotoxic and apoptogenic effects of Dracocephalum kotschyi Boiss., extracts against human glioblastoma U87 cells. Avic. J. Phytomed., 10(6), 594–603.

Smiljkovic, M., Stanisavljevic, D., Stojkovic, D., Petrovic, I., Vicentic, J.M., Popovic, J., Grdadolnik, S.G., Markovic, D., Sanković-Babić, S., Glamoclija, J., Stevanovic, M., Sokovic, M. (2017). Apigenin-7-O- glucoside versus apigenin insight into the modes of antiradical and cytotoxi actions. EXLI J., 16, 795–807.

Sonmezdag, A.S., Kelebek, H., Selli, S. (2018). Characterization of bioactive and volatile profiles of thyme (Thymus vulgaris L.) teas as affected by infusion times. J. Food Meas. Charact., 12, 2570–2580. DOI:

Weremczuk-Jeżyna, I., Kuźma, Ł., Grzegorczyk-Karolak, I. (2021). The effect of different light treatments on morphogenesis, phenolic compound accumulation and antioxidant potential of Dracocephalum forrestii transformed shoots cultured in vitro. J. Photochem. Photobiol. B Biol., 224, 112329. DOI:

Weremczuk-Jeżyna, I., Lisiecki, P., Gonciarz, W., Kuźma, Ł., Szemraj, M., Chmiela, M., Grzegorczyk-Karolak, I. (2020). Transformed shoots of Dracocephalum forrestii W.W. Smith from different bioreactor systems as a rich source of natural phenolic compounds. Molecules, 25(19), 4533. DOI:

Weremczuk-Jeżyna, I., Skała, E., Kuźma, Ł., Kiss, A.K., Grzegorczyk-Karolak, I. (2019). The effect of purine-type cytokinin on the proliferation and production of phenolic compounds in transformed shoots of Dracocephalum forrestii. J. Biotechnol., 306, 125–133. DOI:

Weremczuk-Jeżyna, I., Kuźma, Ł., Kiss, A.K., Grzegorczyk-Karolak, I. (2018). Effect of cytokinins on shoots proliferation and rosmarinic and salvianolic acid B production in shoot culture of Dracocephalum forrestii W.W. Smith. Acta Physiol. Plant., 40, 189–199. DOI:

Weremczuk-Jeżyna, I., Grzegorczyk-Karolak, I., Frydrych, B., Hantuszko-Konka, K., Gerszberg, A., Wysokińska, H. (2017). Rosmarinic acid accumulation and antioxidant potential of Dracocephalum moldavica cell suspension culture. Not. Bot. Hort. Agrobot. Cluj Napoca, 45(1), 2015–2017. DOI:

Vassallo, A., Cioffi, G., De Simone, F., Braca, A., Sango, R., Vanella, A., Russo, A., De Tommasi, N. (2016). New flavonoid glycosides from Chrozophora senegalensis and their antioxidant activity. Nat. Prod. Commun., 1, 1089–1095. DOI:

Xiao, Z., Liu, W., Mu, Y.-P., Zhang, H., Wang, X.-N., Zhao, C.-G., Chen, J.-M., Lu, P. (2020). Pharmacological effects of salvianolic acid B against oxidative damage. Front. Pharmacol., 11, 572373. DOI:

Yaghoobi, M.M., Khaleghi, M., Rezanejad, H., Parsia, P. (2018). Antibiofilm activity of Dracocephalum polyachetum extract an methicillin-resistant Staphylococcus aureus. Avicenna J. Clin. Microbiol. Infect., 5(1), 61772. DOI:

Yan, X., Qi, M., Li, P., Zhan, Y., Shao, H. (2017). Apigenin in cancer therapy: anticancer effects and mechanisms of action. Cell Biosci., 7, 50–66. DOI:

Zhang, B., Song, L., Bekele, L.M., Shi, J., Jia, Q., Zhang, B., Jin, L., Duns, G.J., Chen, J. (2018a). Optimizing factors a effecting development and propagation of Bletilla striata in a temporary immersion system. Sci. Hortic., 232, 121–126. DOI:

Zhang, J., Zhang, X., Zhang, J., Li, M., Chen, D., Wu, T. (2018b). Minor compounds of the high purity salvianolic acid B freeze-dried powder from Salvia miltiorrhiza and antibacterial activity assessment. Nat. Prod. Res., 32(10), 1198–1202. DOI:

Zheng, L., Labeke, M.C. (2017). Long-term effects of red- and blue – light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. Front. Plant. Sci., 8, 917. DOI:

Ziani, B.E.C., Barros, L., Boumehina, A.Z., Bahari, K., Heleno, S.A., Alves, M.J., Ferreira, J.I. (2018). Profiling polyphenol composition by HPLC-DAD-ESI/MSn and antibacterial activity of infusion preparations obtained from four medicinal plants. Food Funct., 9(1), 720–725. DOI:



Weremczuk-Jeżyna, I., Lebelt, L., Piotrowska, D., Gonciarz, W., Chmiela, M., & Grzegorczyk-Karolak, I. (2023). The optimization growth of Dracocephalum forrestii in RITA® bioreactor, and preliminary screening of the biological activity of the polyphenol rich extract. Acta Scientiarum Polonorum Hortorum Cultus, 22(2), 45–59.

Izabela Weremczuk-Jeżyna 
Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
Liwia Lebelt 
Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
Dorota Piotrowska 
Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
Weronika Gonciarz 
Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
Magdalena Chmiela 
Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
Izabela Grzegorczyk-Karolak 
Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.