In vitro propagation of Liparis nervosa (Thunb.) Lindl., an endangered medicinal orchid

Yan Ren

Yunnan Breeding and Cultivation Research and Development Center of Endangered and Daodi Chinese Medicinal Materials, Yunnan University of Chinese Medicine, 1076, Yuhua Road, Chenggong District, Kunming 650500, China
https://orcid.org/0000-0002-5776-711X

Jin-Rong Gao

Yunnan Breeding and Cultivation Research and Development Center of Endangered and Daodi Chinese Medicinal Materials, Yunnan University of Chinese Medicine, 1076, Yuhua Road, Chenggong District, Kunming 650500, China
https://orcid.org/0000-0002-9810-9949

Shou-Meng Cai

Yunnan Breeding and Cultivation Research and Development Center of Endangered and Daodi Chinese Medicinal Materials, Yunnan University of Chinese Medicine, 1076, Yuhua Road, Chenggong District, Kunming 650500, China
https://orcid.org/0000-0003-0138-0968

Hong-Mei Yan

Institute of Quality Standard and Testing Technology, Yunnan Academy of Agriculture Science, Kunming 650205, China
https://orcid.org/0000-0001-6911-5787

Heng-Yu Huang

Yunnan Breeding and Cultivation Research and Development Center of Endangered and Daodi Chinese Medicinal Materials, Yunnan University of Chinese Medicine, 1076, Yuhua Road, Chenggong District, Kunming 650500, China
https://orcid.org/0000-0001-6087-914X


Abstract

In vitro regeneration was studied to protect the rare Chinese medicinal orchid Liparis nervosa (Thunb.) Lindl. The mixtures of protocorm and seeding and the stem tip were used as explants. The results revealed that the best essential medium for L. nervosa growth was 1/3 MS medium with 25 g · L–1 sucrose, 50 g · L–1 banana puree, 40 g · L–1 mashed potato, and 1.0 g · L–1 AC (MS1); MS1 medium with 0.5 mg · L–1 BA, 0.05 mg · L–1 2,4-D, and 1.5 mg · L–1 NAA was optimal for proliferation. When stem tips were cultured in a proliferation medium, four types of proliferation occurred: basal stem cluster bud (occurring at the basal node), tiller bud (occurring at the root), protocorm-like body (occurring at the plant’s base incision), and high-position bud (occurring on plant stem nodes other than the basal nodes). Four methods produced 10.12 proliferation coefficients. In the MS1 medium with 0.5 mg · L−1 NAA, the plantlets rooted 100%, and the rooted plantlets survived 100% after domestication and transplantation.

Keywords:

in vitro regeneration, proliferation method, basal stem cluster bud, tiller bud, protocorm-like body, Liparis nervosa (Thunb.) Lindl.

Alço, T. (2019). [The effects of leaf removal practices at different periods on oenological maturity of cv. Gamay]. M.Sc dissertation. Tekirdağ Namık Kemal Universtiy. In Turkish.

AOAC (1998). Official methods of analysis. 16th ed. Association of Official Analytical Chemists. Arlington.

Bahar, E., Korkutal, I., Kurt, C. (2011). [Water deficit effect on different phenologic growth stages in grape berry growing, development and quality]. TUJNS 12, 23–34. In Turkish.

Blouin, J., Guimberteau, G. (2000). Maturation et maturite des raisins. Bordeaux, Feret.

Bubola, M., Sivilotti, P., Rossi, S., Bestulić, E., Plavša, T., Radeka, S. (2022). Impact of canopy management practices on phenolic composition and sensory profile of cv. Teran wine. BIO Web Conf., 44, 02001. https://doi.org/10.1051/bioconf/20224402001 DOI: https://doi.org/10.1051/bioconf/20224402001

Candar, S. (2022). The effects of water restriction on leaf morphological characteristics and vegetative growth components in Vitis vinifera L. cultivars. 5th Agriculture, Environment and Health Congress, Aydın Adnan Menderes University, 17–19 February 2022, Aydın, Turkey, 83–95.

Candar, S. (2023). How abiotic stress induced by artificial wounding changes maturity levels and berry composition of Merlot (Vitis vinifera L.). Eur. Food Res. Technol., 249, 2611–2623. https://doi.org/10.1007/s00217-023-04318-6 DOI: https://doi.org/10.1007/s00217-023-04318-6

Candar, S., Açıkbaş, B., Korkutal, İ., Bahar, E. (2021). [The effects of water deficit on leaf and stoma morphological properties of wine grapes in Thrace Region]. KSU J. Agric. Nat., 24(4), 766–776. In Turkish. https://doi.org/10.18016/ksutarimdoga.vi.738285 DOI: https://doi.org/10.18016/ksutarimdoga.vi.738285

Candar, S., Bahar, E., Korkutal, I. (2020). Impacts of leaf area on the physiological activity and berry maturation of Merlot (Vitis vinifera L.). Appl. Ecol. Environ. Res., 18(1), 1523–1538. https://doi.org/10.15666/aeer/1801_15231538 DOI: https://doi.org/10.15666/aeer/1801_15231538

Candar, S., Bahar, E., Korkutal, I., Alço, T., Gülcü, M. (2019). [The effects of different green pruning applications on berry maturaton in Merlot (Vitis vinifera L.)]. AMU Fac. of Agric. J. Agric Sci., 16(1), 53–61. In Turkish. https://doi.org/10.25308/aduziraat.520923 DOI: https://doi.org/10.25308/aduziraat.520923

Candar, S., Korkutal, İ., Bahar, E. (2022). Changes of vine water status and growth parameters under different canopy managements on cv. Merlot (Vitis vinifera L.). J. Tekirdag Agric. Fac., 19(1), 1–15. https://doi.org/10.33462/jotaf.795232 DOI: https://doi.org/10.33462/jotaf.795232

Candar, S. (2018). [Effects of different canopy microclimates on physiological responses and quality of cv. Merlot (Vitis vinifera L.)]. Doctoral dissertation. Tekirdağ Namık Kemal Universtiy. In Turkish.

Castañeda-Ovando, A., Pacheco-Hernández, M.D.L., Páez-Hernández, M.E., Rodríguez, J.A., Galán-Vidal, C.A. (2009). Chemical studies of anthocyanins: a review. Food Chem., 113(4), 859–871. https://doi.org/10.1016/j.foodchem.2008.09.001 DOI: https://doi.org/10.1016/j.foodchem.2008.09.001

Cemeroğlu, B. (2007). [Gıda analizleri]. Gıda Teknolojisi Dernegi Yayınları, 34, Ankara. In Turkish.

Chacón, J.L., García, E., Martínez, J., Romero, R., Gómez, S. (2009). Impact of the vine water status on the berry and seed phenolic composition of Merlot (Vitis vinifera L.) cultivated in a warm climate: consequence for the style of wine. Vitis-Geilweilerhof, 48(1), 7–9.

Chitwood, D.H., Rundell, S.M., Li, D.Y., Woodford, Q.L., Yu, T.T, Lopez, J.R., Greenblatt, D., Kang, J., Londo, J.P. (2016). Climate and developmental plasticity: interannual variability in grapevine leaf morphology. Plant Physiol., 170(3), 1480–1491. https://doi.org/10.1104/pp.15.01825 DOI: https://doi.org/10.1104/pp.15.01825

Cox, J. (1999). From Vines to Wines. Storey Publishing, LLC.

Esteban, M.A., Villanueva, M.J., Lissarrague, J.R. (2002). Relationships between different berry components in Tempranillo (Vitis vinifera L.) grapes from ırrigated and non-ırrigated vines during ripening. J. Sci. Food Agric., 82(10), 1136–1146. https://doi.org/10.1002/Jsfa.1149 DOI: https://doi.org/10.1002/jsfa.1149

Ferlito, F., Allegra, M., Torrisi, B., Pappalardo, H., Gentile, A., La Malfa, S., Continella, A., Stagno, F., Nicolosi, E. (2019). Early defoliation effects on water status, fruit yield and must quality of Nerello mascalese grapes. Sci. Agric., 77(6). https://doi.org/10.1590/1678-992X-2019-0025 DOI: https://doi.org/10.1590/1678-992x-2019-0025

Ferrer, M., Echeverría, G., Carbonneau, A. (2014). Effect of berry weight and ıts components on the contents of sugars and anthocyanins of three varieties of Vitis vinifera L. under different water supply conditions. S. Afr. J. Enol. Vitic., 35(1), 103–113. DOI: https://doi.org/10.21548/35-1-989

Gülbasar Kandilli, G., Atak, A ., Doyğacı, Y., Candar, S., Söylemezoğlu, G., Yılmaz, E. (2022). Disease resistance and fruit quality characteristics of 12 Vitis spp. grown in a humid-like climate region. Int. J. Agric. Environ. Food Sci. 6(3), 457–470. https://doi.org/10.31015/jaefs.2022.3.16 DOI: https://doi.org/10.31015/jaefs.2022.3.16

Harbertson, J.F., Kennedy, J.A., Adams, D.O. (2002). Tannin in skins and seeds of Cabernet sauvignon, Syrah, and Pinot noir berries during ripening. Am. J. Enol. Vitic., 53(1), 54–59. http://dx.doi.org/10.5344/ajev.2002.53.1.54 DOI: https://doi.org/10.5344/ajev.2002.53.1.54

INRA, (2007). [Determination d’anthocyanes en echantillons de raisin. Mode Operatiore]. Ref: MO-LAB-23.

Keller, M., Romero, P., Gohil, H., Smithyman, R.P., Riley, W.R., Casassa, L.F., Harbertson, J.F. (2016). Deficit irrigation alters grapevine growth. Physiology, and fruit microclimate. Am. J. Enol. Vitic., 67, 426–435. https://doi.org/10.5344/ajev.2016.16032 DOI: https://doi.org/10.5344/ajev.2016.16032

Korkutal, İ., Bahar, E., Bayram, S. (2017). [Effects of different soil tillages and leaf removal applications on shoot and leaf characteristics and water stress of cv. Syrah]. J. Tekirdag Agric. Fac., 15(1), 1–13. In Turkish.

Kotseridis, Y., Georgiadou, A., Tikos, P., Kallithraka, S., Koundouras, S. (2012). Effects of severity of post-flowering leaf removal on berry growth and composition of three red Vitis vinifera L. cultivars grown under semiarid conditions. J. Agric. Food Chem., 60(23), 6000–6010. DOI: https://doi.org/10.1021/jf300605j

Lorenz, D., Eichhorn, K., Bleiholder, H., Klose, R., Meier., U. (1995). Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera) – codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res., 1(2), 100–110. https://doi.org/10.1111/j.1755 0238.1995.tb00085.x DOI: https://doi.org/10.1111/j.1755-0238.1995.tb00085.x

O’Kennedy, K., Reid, G. (2008). Yeast nutrient management in winemaking. Austral. New Zeal. Grape­grower Winemaker., 537, 92–101.

Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A., Deloire, A. (2002). Influence of pre- and post-veraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. Am. J. Enol. Vitic, 53(4), 261–267.

Palliotti, A., Panara, F., Silvestroni, O., Lanari, V., Sabbatini, P., Howell, G.S., Gatti, M., Poni, S. (2013). Influence of mechanical postveraison leaf removal apical to cluster zone on delay of fruit ripening in Sangiovese (Vitis vinifera L.) grapevines. Aust. J. Grape Wine Res., 19, 369–377. https://doi.org/10.1111/ ajgw.12033 DOI: https://doi.org/10.1111/ajgw.12033

Paredes-López, O., Cervantes-Ceja, M.L., Vigna-Pérez, M., Hernández-Pérez, T. (2010). Berries: improving human health and healthy aging, and promoting quality life a review. Plant Foods Hum. Nutr., 65(3), 299–308. https://doi.org/10.1007/s11130-010-0177-1 DOI: https://doi.org/10.1007/s11130-010-0177-1

Ribéreau-Gayon. P., Glories, Y., Maujean, A., Dubourdieau, D. (2000). Handbook of enology. The chemistry of wine and stabilization and treatments. John Wiley And Sons Ltd.

Roby, G., Harbertson, J.F., Adams, D.A., Matthews, M.A. (2004). Berry size and vine water deficits as factors in winegrape composition: anthocyanins and tannins. Aust. J. Grape Wine Res., 10(2), 100–107. https://doi.org/10.1111/j.1755-0238.2004.tb00012.x DOI: https://doi.org/10.1111/j.1755-0238.2004.tb00012.x

Rossouw, G.C., Suklje, K., Smith, J.P., Barril, C., Deloire, A., Holzapfel, B.P. (2018). Vitis vinifera berry metabolic composition during maturation: implications of defoliation. Physiol. Plant., 164(2), 120–133. https://doi.org/10.1111/ppl.12715 DOI: https://doi.org/10.1111/ppl.12715

Sweetman, C.V., Sadras. O., Hancock, R.D., Soole, K.L., Ford, C.M. (2014). Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera Fruit. J. Experim. Bot., 65(20), 5975–5988. https://doi.org/10.1093/jxb/eru343 DOI: https://doi.org/10.1093/jxb/eru343

Tarara, J.M., Lee, J. (2019). An introduction to environmental ınfluences on ripening in grapes: focus on wine grapes and phenolics. United States Department of Agriculture, Agricultural Research Service. Available from: https://grapes.extension.org/an-introduction-to-environmental-influences-on-ripening-in-grapes-focus-on-wine-grapes-and-phenolics/ [date of access: 24.01.2023].

Tardaguila, J., de Toda, F.M., Poni, S., Diago, M.P. (2010). Impact of early leaf removal on yield and fruit and wine composition of Vitis vinifera L. Graciano and Carignan. Am. J. Enol. Vitic., 61, 372–381. DOI: https://doi.org/10.5344/ajev.2010.61.3.372

Teker, T., Altindisli, A. (2021). Excessive pruning levels in young grapevines (Vitis vinifera L. cv. Sultan 7) cause water loss in seedless cluster berries. Int. J. Fruit Sci., 21, 979–992. https://doi.org/10.1080/15538362.2021.1964416 DOI: https://doi.org/10.1080/15538362.2021.1964416

Tozer, W.C., Rice, B., Westoby, M. (2015). Evolutionary divergence of leaf width and ıts correlates. Am. J. Bot., 102(3), 367–78. https://doi.org/10.3732/ajb.1400379 DOI: https://doi.org/10.3732/ajb.1400379

Waterhouse, A.L. (2002). Determination of total phenolics. Curr. Protoc. Food Anal. Chem., 6, 11.11–11.18.

Yamane, T., Shibayama, K. (2006). Effects of changes in the sensitivity to temperature on skin coloration in ‘Aki Queen’ grape berries. J. Japan Soc. Hort. Sci., 75(6), 458–462. DOI: https://doi.org/10.2503/jjshs.75.458

Yılmaz, E., Çiçek, İ. (2018). [Detailed Köppen-Geiger climate regions of Turkey]. J. Hum. Sci., 15(1), 225–242. https://doi.org/10.14687/jhs.v15i1.5040 DOI: https://doi.org/10.14687/jhs.v15i1.5040

Download

Published
2023-10-30



Yan Ren 
Yunnan Breeding and Cultivation Research and Development Center of Endangered and Daodi Chinese Medicinal Materials, Yunnan University of Chinese Medicine, 1076, Yuhua Road, Chenggong District, Kunming 650500, China https://orcid.org/0000-0002-5776-711X
Jin-Rong Gao 
Yunnan Breeding and Cultivation Research and Development Center of Endangered and Daodi Chinese Medicinal Materials, Yunnan University of Chinese Medicine, 1076, Yuhua Road, Chenggong District, Kunming 650500, China https://orcid.org/0000-0002-9810-9949
Shou-Meng Cai 
Yunnan Breeding and Cultivation Research and Development Center of Endangered and Daodi Chinese Medicinal Materials, Yunnan University of Chinese Medicine, 1076, Yuhua Road, Chenggong District, Kunming 650500, China https://orcid.org/0000-0003-0138-0968
Hong-Mei Yan 
Institute of Quality Standard and Testing Technology, Yunnan Academy of Agriculture Science, Kunming 650205, China https://orcid.org/0000-0001-6911-5787
Heng-Yu Huang 
Yunnan Breeding and Cultivation Research and Development Center of Endangered and Daodi Chinese Medicinal Materials, Yunnan University of Chinese Medicine, 1076, Yuhua Road, Chenggong District, Kunming 650500, China https://orcid.org/0000-0001-6087-914X



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.