Elaboration of micropropagation system of medicinal plant yacon (Smallanthus sonchifolius (Poepp.) H. Rob.)

Waldemar Kiszczak

Department of Applied Biology, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
https://orcid.org/0000-0002-3925-5233

Urszula Kowalska

Department of Applied Biology, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
https://orcid.org/0000-0003-1806-0493

Maria Burian

Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
https://orcid.org/0000-0002-5891-6869

Sława Glińska

Laboratory of Microscopic Imaging and Specialized Biological Techniques Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
https://orcid.org/0000-0001-7202-7737

Marcin Domaciuk

Institute of Biological Sciences, Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
https://orcid.org/0000-0002-4294-9850

Krystyna Górecka

Department of Applied Biology, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
https://orcid.org/0000-0002-7287-2030


Abstract

Yacon becomes an important plant with strong medical and dietary potential. Therefore, studies on the optimization of yacon micropropagation were undertaken. Reproduction of yacon is conducted by traditional methods with green seedlings or long offsets taken from the underground and aboveground rootstock. The influence of different disinfection methods, various initial explants and growth regulators, their concentrations, and combinations on the efficiency of micropropagation have been analyzed. The most effective disinfection was the use of 70% ethanol and 0.5% Tween 20. The optimal initial explants were apical and lateral buds cultured on Murashige and Skoog (MS) medium with 0.2 mg L–1 kinetin and 1 mg L–1 indole-3-acetic acid. The most intensive shoot regeneration occurred on MS medium with 1 mg L–1 thidiazuron and 1-naphthylacetic acid. Histological observations demonstrated the strong effect of growth substances on shoot organogenesis from callus tissue. Shoots obtained from in vitro cultures rooted easily on modified MS media with ½ or ¼ concentration of macroelements, 20 g L–1 sucrose and 3 mg L–1 1-naphthylacetic acid. All plants adapted to ex vitro conditions.

Keywords:

auxins, cytokinins, histological structure, micropropagation, regeneration, tissue culture

Brijwal, L., Pandey, A., Tamta, S. (2015). In vitro propagation of the endangered species Berberis aristata DC. via leaf-derived callus. In Vitro Cell. Dev. Biol., Plant, 51(6), 637–647. https://doi.org/10.1007/s11627-015-9716-7 DOI: https://doi.org/10.1007/s11627-015-9716-7

Corrêa, C.M., de Oliveira, G.N., Astarita, L.V., Santarém, E.R. (2009). Plant regeneration through somatic embryogenesis of yacón (Smallanthus sonchifolius Poepp. and Endl. H. Robinson). Braz. Arch. Biol. Technol., 52(3), 549–554. https://doi.org/10.1590/s1516-89132009000300005 DOI: https://doi.org/10.1590/S1516-89132009000300005

Ernst, R. (1994). Effects of thidiazuron on in vitro propagation of Phalaenopsis and Doritaenopsis (Orchidacea). Plant. Cell. Tiss. Org. Cult., 39, 273–275. https://doi.org/10.1007/bf00035982 DOI: https://doi.org/10.1007/BF00035982

Estrella, J.E., Lazarte, J.E., (1994). In vitro propagation of Jícama (Polymnia sonchifolius Poepp. and Endlicher): a neglected Andean crop. Hortic. Sci., 29(4), 331–337. https://doi.org/10.21273/hortsci.29.4.331 DOI: https://doi.org/10.21273/HORTSCI.29.4.331

Hamada, M., Hosoki, T., Kusabiraki, Y. (1990). Mass-propagation of yacon (Polymnia sonchifolia) by repeated node culture. Plant Tiss. Cult. Lett., 7(1), 35–37. https://doi.org/10.5511/plantbiotechnology1984.7.35 DOI: https://doi.org/10.5511/plantbiotechnology1984.7.35

Hong, P.-L., Chen, J.-T., Chang, W.C. (2008). Plant regeneration via protocorm-like body formation and shoot multiplication from seed-derived callus of a maudiae type slipper orchid. Acta. Physiol. Plant., 30(5), 755–759. https://doi.org/10.1007/s11738-008-0158-2 DOI: https://doi.org/10.1007/s11738-008-0158-2

Kundu, S., Gantait, S. (2018) Thidiazuron-induced protocorm-like bodies in orchid: progress and prospects. In: Thidiazuron: from urea derivative to plant growth regulator. Ahmad N., Faisal M. (eds.). Springer, Singapore, 273–287. https://doi.org/10.1007/978-981-10-8004-3_13 DOI: https://doi.org/10.1007/978-981-10-8004-3_13

Lachman, J., Fernández, E.C., Orsák, M. (2003). Yacon [Smallanthus sonchifolia (Poepp. et Endl.) H. Robinson] chemical composition and use – a review. Plant Soil Environ., 49, 283–290. https://doi.org/10.17221/4126-pse DOI: https://doi.org/10.17221/4126-PSE

Lago, A., Godden, S.M., Bey, R., Ruegg, P.L., Leslie, K. (2011). The selective treatment of clinical mastitis based on on-farm culture results: I. Effects on antibiotic use, milk withholding time, and short-term clinical and bacteriological outcomes. Int. J. Dairy Sci., 94(9), 4441–4456. https://doi.org/10.3168/jds.2010-4046 DOI: https://doi.org/10.3168/jds.2010-4046

Mansilla, R., López, C., Flores, M., Espejo, R. (2010). Estudios de la biología reproductiva en cinco accesiones de Smallanthus sonchifolius (Poepp. & Endl.) Robinson [Reproductive biology study in five accessions of Smallanthus sonchifolius (Poepp. and Endl.), Robinson]. Ecol. Appl., 9(2), 167–175 [in Spanish]. https://doi.org/10.21704/rea.v9i1-2.407 DOI: https://doi.org/10.21704/rea.v9i1-2.407

Matsubara, S., Ohmori, Y., Takada, Y., Komasadomi, T., Fukazawa, H. (1990). Vegetative propagation of yacon (Polymnia sonchifilia) by shoot apex, node and callus cultures. Sci. Rep. Facult. Agri. Okayama University, 76, 1–6.

Matsubara, S. (1997). Micropropagation of Polymnia sonchifolia (Yacon). Biotech. Agric. Forestry, 39, 150–159. https://doi.org/10.1007/978-3-662-07774-0_10 DOI: https://doi.org/10.1007/978-3-662-07774-0_10

Millela, L., Martelli, G., Salava, J., Fernández, E., Ovesná, J., Greco, I. (2011). Total phenolic content, RAPDs, AFLPs and morphological traits for the analysis of variability in Smallanthus sonchifolius., Genet. Resour. Crop. Evol., 58, 545–551. https://doi.org/10.1007/s10722-010-9597-x DOI: https://doi.org/10.1007/s10722-010-9597-x

Mogor, G., Mogor, A.F., Lima, G.P.P (2003). Bud source asepsis and benzylaminopurine (BAP) effect on yacon (Polymnia sonchifolia) micropropagation. Acta Hortic., 597, 311–314. https://doi.org/10.17660/actahortic.2003.597.44 DOI: https://doi.org/10.17660/ActaHortic.2003.597.44

Murashige, T., Skoog, F.A. (1962). Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nieves, M.C., Aspuria, E.T., Bernardo, E.C., Tayangona, M.A.D. (2016). Growth response of in vitro-derived nodal sections of Kalanchoe blossfeldiana Poellnitz as influenced by benzylaminopurine, thidiazuron and paclobutrazol. Asia Life Sci., 25(1), 207–220.

Niwa, M., Arai, T., Fujita, K., Marubachi, W., Inoue, E., Tsukihashi, T. (2002). Plant regeneration through leaf culture of yacon. J. Japan. Soc. Hortic. Sci., 71(4), 561–567. https://doi.org/10.2503/jjshs.71.561 DOI: https://doi.org/10.2503/jjshs.71.561

Passos, L.M.L., Park, Y.K. (2003). Frutooligossacarídeos: implicações na saúde humana e utilização emalimentos [Fructooligosaccharides: implications in human healt being and use in foods]. Ciência Rur., 33(2), 385–390 [in Portuguese]. https://doi.org/10.1590/s0103-84782003000200034 DOI: https://doi.org/10.1590/S0103-84782003000200034

Paterson, K.E., Everett, N.P. (1985). Regeneration of Helianthus annuus inbred plants from callus. Plant. Sci., 42(2), 125–132. https://doi.org/10.1016/0168-9452(85)90152-9 DOI: https://doi.org/10.1016/0168-9452(85)90152-9

Siddique, I., Bukhari, N.A.W, Perveen, K., Siddiqui, I. (2015). Influence of plant growth regulators on in vitro shoot multiplication and plantlest formation in Cassia angustifolia Vahl. Braz. Arch. Biol. Technol., 58(5), 686–691. https://doi.org/10.1590/s1516-89132015050290 DOI: https://doi.org/10.1590/S1516-89132015050290

Singh, P., Dwivedi, P. (2014). Two-stage culture procedure using thidiazuron for efficient micropropagation of Stevia rebaudiana, an anti-diabetic medicinal herb. Biotech., 4(4), 431–437. https://doi.org/10.1007/s13205-013-0172-y DOI: https://doi.org/10.1007/s13205-013-0172-y

Ślesak, H., Góralski, G., Kwolek, D., Dziedzic, K., Grabowska-Joachimiak, A. (2015). Male adventitious roots of Rumex thyrsiflorus Fingerh as a source of genetically stable micropropagated plantlets. Plant. Cell. Tiss. Org., 123(1), 193–203. https://doi.org/10.1007/s11240-015-0826-z DOI: https://doi.org/10.1007/s11240-015-0826-z

Tsai, K.-L., Chen, E.G., Chen, J.-T. (2016). Thidiazuron-induced efficient propagation of Salvia miltiorrhiza through in vitro organogenesis and medicinal constituents of regenerated plants. Acta Physiol. Plant., 38(1), 29–39. https://doi.org/10.1007/s11738-015-2051-0 DOI: https://doi.org/10.1007/s11738-015-2051-0

Zhao, P., Wu, F., Feng F.-S., Wang, W.-J., (2008). Protocorm-like body (PLB) formation and plant regeneration from the callus culture of Dendrobium candidum Wall ex Lindl. In Vitro Cell. Dev. Biol.-Plant., 44, 178–185. https://doi.org/10.1007/s11627-007-9101-2 DOI: https://doi.org/10.1007/s11627-007-9101-2

Download

Published
2022-02-28



Waldemar Kiszczak 
Department of Applied Biology, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland https://orcid.org/0000-0002-3925-5233
Urszula Kowalska 
Department of Applied Biology, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland https://orcid.org/0000-0003-1806-0493
Maria Burian 
Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland https://orcid.org/0000-0002-5891-6869
Sława Glińska 
Laboratory of Microscopic Imaging and Specialized Biological Techniques Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland https://orcid.org/0000-0001-7202-7737
Marcin Domaciuk 
Institute of Biological Sciences, Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland https://orcid.org/0000-0002-4294-9850
Krystyna Górecka 
Department of Applied Biology, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland https://orcid.org/0000-0002-7287-2030



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.