Cytogenetyczne mapowanie genów z rodziny HSPB w genomie świni

BARBARA DANIELAK-CZECH

Departament of Animal Cytogenetics and Molecular Genetics, National Institute of Animal Production, Krakowska 1, 32-083 Balice/Kraków

ANNA KOZUBSKA-SOBOCIŃSKA

Departament of Animal Cytogenetics and Molecular Genetics, National Institute of Animal Production, Krakowska 1, 32-083 Balice/Kraków

MAREK BABICZ

Department of Pig Breeding and Production Technology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin



Abstrakt

Białka z rodziny HSPB (małe białka szoku cieplnego) odgrywają funkcjonalną rolę w regulacji wewnątrzkomórkowych procesów (apoptoza, odpowiedź na stany zapalne, aktywność chaperonowa dotycząca kontroli fałdowania i agregacji białek) odpowiedzialnych za ochronę przed stresowymi czynnikami środowiskowymi. Mutacje genów kodujących te białka są przyczyną dysfunkcji komórek neuronowych, prowadzących do miopatii, neuropatii motorycznych i chorób neurodegeneracyjnych. Celem badań było cytogenetyczne mapowanie genów HSPB w genomie świni z zastosowaniem techniki FISH i sond uzyskanych z klonów BAC zawierających sekwencje genów HSPB1, HSPB2, CRYAB (alternatywna nazwa HSPB5), HSPB6, HSPB8, pochodzących z biblioteki genomowej CHORI-242 Porcine BAC Library. Przed hybrydyzacją in situ, przeprowadzoną na chromosomach metafazowych barwionych techniką prążków DAPI, potwierdzono obecność badanych genów w wyselekcjonowanym klonie metodą PCR z wykorzystaniem genowo specyficznych starterów.

W wyniku przeprowadzonych eksperymentów uzyskano sygnały FISH w regionach chromosomów

SSC3p15 (HspB1), SSC9p21 (HspB2 and CRYAB), SSC6q12 (HspB6) i HspB8 SSC14q21 (HspB8), co umożliwiło określenie fizycznej lokalizacji badanych genów HSPB na mapie genomowej świni domowej. Uzyskane wyniki mogą przyczynić się do wyjaśnienia roli genów HSPB w patomechanizmach miopatii i neuropatii u zwierząt hodowlanych.

Słowa kluczowe:

chromosomy świni, FISH, mapowanie cytogenetyczne, małe białka szoku cieplnego – HSPB, zaburzenia rozwoju i funkcji mięśni

Arrigo A.P., 2012. Pathology–dependent effects linked to small heat shock proteins expression: an update. Scientifica 185641, doi: org/10.6064/2012/185641.

Arrigo A.P., 2013. Human small heat shock proteins: Protein interactomes of homo- and heterooligomeric complexes: An update. FEBS Lett. 587, 1959–1969.

Bao E., Sultan K.R., Bernhard N., Hartung J., 2009. Expression of heat shock proteins in tissues from young pigs exposed to transport stress. Dtsch. Tierarztl. Wochenschr. 116(9), 321–325.

Bao E., Sultan K.R., Nowak B., Hartung J., 2008. Expression and distribution of heat shock proteins in the heart of transported pigs. Cell Stress Chaperon. 13, 459–466.

Boncoraglio A., Minoia M., Carr S., 2012. The family of mammalian small heat shock proteins (HSPBs): Implications in protein deposit diseases and motor neuropathies. Int. J. Biochem. Cell Biol. 44, 1657–1669.

Brownell S.E., Becker R.A., Steinman L., 2012. The protective and therapeutic function of small heat shock proteins in neurological diseases. Front. Immunol. 3, 74, doi: 10.3389/fimmu.2012.00074.

Chiral M., Grongnet J.F., Plumier J.C., David J.C., 2004. Effects of hypoxia on stress proteins in the piglet brain at birth. Pediatr Res. 56(5), 775–782.

Danielak-Czech B., Kozubska-Sobocińska A., Kruczek K., Babicz M., Rejduch B., 2014. Physical mapping of the HSPB genes in the domestic and wild pigs. Chrom. Res. 22(3), 413.

David J.C., Boelens W.C., Grongnet J.F., 2006. Up-regulation of heat shock protein HSP 20 in the hippocampus as an early response to hypoxia of the newborn. J. Neurochem. 99, 570–581.

David J.C., Landry J., Grongnet J.F., 2000. Perinatal expression of heat-shock protein 27 in brain regions and nonneural tissues of the piglet. J. Mol. Neurosci. 15(2), 109–120.

Doerwald L., van Rheede T, Dirks R. P., Madsen O., Rexewinkel R., van Gensen S.T., Martens G.J., de Jong W.W., Lubsen N.H., 2004. Sequence and functional conservation of the intergenic region between the head-to-head genes encoding the small heat shock proteins αBcrystallin and HSPB2 in the mammalian lineage. J. Mol. Evol. 59, 674–686.

Dubińska-Magiera M., Jabłońska J., Saczko J., Kulbacka J., Jagla T., Daczewska M., 2014. Contribution of small heat shock proteins to muscle development and function. FEBS Lett. 568, 517– 530.

Golenhofen N., Perng M.D., Quinlan R.A., Drenckhahn D., 2004. Comparison of the small heat shock proteins alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP in heart and skeletal muscle. Histochem. Cell Biol. 122(5), 415–425.

Goureau A., Yerle M., Schmitz A., Riquet J., Millan D., Pinton P., Frelat G., Gellin J., 1996. Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 36, 252–262.

Gustavsson I., 1988. Standard karyotype of the domestic pig. Committee for the Standardized Karyotype of the Domestic Pig. Hereditas 109, 151–157.

Herrera-Mendez C.H., Becila S., Boudjellal A., Ouali A., 2006. Meat ageing: reconsideration of the current concept. Trends Food Sci. Tech. 17, 394–405.

Hu X., Gao Y., Feng C., Liu Q,. Wang X., Du Z., Wang Q., Li N., 2009. Advanced technologies for genomic analysis in farm animals and its application for QTL mapping. Genetica 136, 371–386.

Hu Z.L., Park C.A., Wu X.L., Reccy J.M., 2013. Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res. 41, 871–879, doi: 10.1093/nar/gks1150.

Humphray S.J., Scott C.E., Clark R., Marron B., Bender C., Camm N., Davis J., Jenks A., Noon A., Patel M., Sehra H., Yang F., Rogatcheva M.B., Milan D., Chardon P., Rohrer G., Nonneman D., de Jong P., Meyers S.N., Archibald A., Beever J.E., Schook L.B., Rogers J., 2007. A high utility integrated map of the pig genome. Genome Biol. 8, R139, doi:10.1186/gb2007-8-7-r139.

Hwang I.H., Park B.Y., Kim J.H., Cho S.H., Lee J.M., 2005. Assessment of postmortem proteolysis by gel-based proteome analysis and its relationship to meat quality traits in pig longissimus. Meat Sci. 69(1), 79–91.

Iannuzzi L. Di Berardino D., 2008. Tools of the trade: diagnostics and research in domestic animal cytogenetics. J. Appl. Genet. 49, 357–366.

Iwaki A., Nagano T., Nakagawa M., Iwaki T., Fukumaki Y., 1997. Identification and characterization of the gene encoding a new member of the alpha-crystallin/small hsp family, closely linked to the alphaB-crystallin gene in a head-to-head manner. Genomics 45, 386–94.

Jiang Z., Rothschild M.F., 2007. Swine genome science comes of age. Int. J. Biol. Sci. 3, 129– 131.

Jensen J.H., Conley L.N., Hedegaard J., Nielsen M., Young J.F., Oksbjerg N., Hornshøj H., Bendixen C., Thomsen B., 2012. Gene expression profiling of porcine skeletal muscle in the early recovery phase following acute physical activity. Exp. Physiol. 97(7), 833–848.

Laville E., Sayd T., Terlouw C., Blinet S., Pinguet J., Fillaut M., Glénisson J., Chérel P., 2009. Differences in pig muscle proteome according to HAL genotype: Implications for meat quality defects. J. Agr. Food Chem. 57(11), 4913–4923.

Lametsch R., Bendixen E., 2001. Proteome analysis applied to meat science: Characterizing post mortem changes in porcine muscle. J. Agr. Food Chem. 49(10), 4531–4537.

Lewin H., Larkin D.M., Pontius J., O’Brien S.J., 2009. Every genome sequence needs a good map. Genome Res. 19, 1925–1928.

Liu H., Dicksved J., Lundh T., Lindberg J.E., 2014. Heat shock proteins: intestinal gatekeepers that are influenced by dietary components and the gut microbiota. Pathogens 3, 187–210.

Liu H., Roos S., Jonsson H., Ahl D., Dicksved J., Lindberg J.E., Lundh T., 2015. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells. Physiol. Rep. 3(4), e12355, doi: 10.14814/phy2.12355.

Lomiwes D., Farouk M.M., Wiklund E., Young O.A., 2014. Small heat shock proteins and their role in meat tenderness: A review. Meat Sci. 96, 26–40.

Kwasiborski A., Sayd T., Chambon C., Santé-Lhoutellier V., Rocha D, Terlouw C., 2008. Pig longissimus lumborum proteome: Part II: Relationships between protein content and meat quality. Meat Sci. 80(4), 982–996.

Mymrikov E.V., Seit-Nebi S.S., Gusev N.B., 2011. Large potentials of small heat shock proteins. Physiol. Rev. 91, 1123–1159.

Nefti O., Grongnet J.F, David J.C., 2005. Overexpression of alphaB crystallin in the gastrointestinal tract of the newborn piglet after hypoxia. Shock 24(5), 455– 461.

Ouali A., Herrera-Mendez C.H., Coulis G., Becila S., Boudjellal A., Aubry L., Sentandreu M.A., 2006. Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Sci. 74, 44–58.

Rothschild M.F., Hu Z.L., Jiang Z., 2007. Advances in QTL mapping in pigs. Int. J. Biol. Sci. 3, 192–197.

Tallot P., Grongnet J.F., David J.C., 2003. Dual perinatal and developmental expression of small heat shock proteins alphaB-crystallin and HSP27 in different tissues of the developing piglet. Biol. Neonate 83(4), 281–288.

Taylor R.P., Benjamin I.J., 2005. Small heat shock proteins: a new classification scheme in mammals. J. Mol. Cell. Cardiol. 38, 433–444.

Vingborg R.K.K., Gregersen V.R., Zhan B., Panitz F., Høj A., Sørensen K.K., Madsen L.B., Larsen K., Hornshøj H., Wang X., Bendixen C., 2009. A robust linkage map of the porcine autosomes based on gene-associated SNPs. BMC Genomics 10, 134, doi:10.1186/14712164-10-134.

Verschuure P., Tatard C., Boelens W.C., Grongnet J.F., David J.C., 2003. Expression of small heat shock proteins HspB2, HspB8, Hsp20 and cvHsp in different tissues of the perinatal developing pig. Eur. J. Cell Biol. 82(10), 523–530.

Wettstein G., Bellaye P.S., Micheau O., Bonniaud P., 2012. Small heat shock proteins and the cytoskeleton: An essential interplay for cell integrity? Int. J. Biochem. Cell B. 44(10), 1680–1686.

Whyte J.J., Prather R.S., 2011. Genetic modifications of pigs for medicine and agriculture. Mol. Reprod. Dev. 78(10–11), 879–891.

Opublikowane
2015-12-02



BARBARA DANIELAK-CZECH 
Departament of Animal Cytogenetics and Molecular Genetics, National Institute of Animal Production, Krakowska 1, 32-083 Balice/Kraków
ANNA KOZUBSKA-SOBOCIŃSKA 
Departament of Animal Cytogenetics and Molecular Genetics, National Institute of Animal Production, Krakowska 1, 32-083 Balice/Kraków
MAREK BABICZ 
Department of Pig Breeding and Production Technology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin



Licencja

Od 2022 r. artykuły są udostępniane na zasadach licencji Creative Commons uznanie autorstwa 4.0 międzynarodowa (CC BY 4.0). Artykuły opublikowane przed 2022 r. są dostępne na zasadach licencji Creative Commons uznanie autorstwa – użycie niekomercyjne – bez utworów zależnych 4.0 międzynarodowa  (CC BY-NC-ND 4.0).

Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej, nie jest rozpatrywany do publikacji w innych wydawnictwach.

Autor podpisuje oświadczenie o oryginalności dzieła i wkładzie poszczególnych osób.


Inne teksty tego samego autora

1 2 3 4 5 > >>