Skip to main navigation menu Skip to main content Skip to site footer

Vol. 33 No. 4 (2015)

Articles

Cytogenetic mapping of genes from the family HSPB in the pig genome

Submitted: July 29, 2019
Published: 2015-12-02

Abstract

The proteins from the family HSPB (small heat shock proteins) play a functional role in the regulation of intracellular processes (apoptosis, inflammatory response, chaperone activity concerning the protein folding and aggregation control) responsible for the protection from environmental stress factors. Mutations of genes encoding these proteins are the reason for neuronal cells dysfunctions, leading to myopathies, motor neuropathies and neurodegenerative disorders. The aim of the study was cytogenetic mapping of the HSPB genes in the pig genome with an application of FISH technique and the probes obtained from BAC clone containing sequences of HSPB1, HSPB2, CRYAB (alternative name HSPB5), HSPB6, HSPB8 genes, derived from the CHORI-242 Porcine BAC Library. Prior to in situ hybridization, carried out on metaphase chromosomes stained by DAPI bands technique, the presence of the studied genes in the selected clone was confirmed by means of PCR method with the use of the gene-specific primers. As a result of the experiments FISH signals in the chromosome regions SSC3p15 (HspB1), SSC9p21 (HspB2 and CRYAB), SSC6q12 (HspB6) and HspB8 SSC14q21 (HspB8) were obtained, which enabled to designate cytogenetic localization of the studied HSPB genes on the domestic pig genome map. The results obtained may help to elucidate the role of the HSPB genes in the pathomechanisms of myopathies and neuropathies in breeding animals

References

Arrigo A.P., 2012. Pathology–dependent effects linked to small heat shock proteins expression: an update. Scientifica 185641, doi: org/10.6064/2012/185641.

Arrigo A.P., 2013. Human small heat shock proteins: Protein interactomes of homo- and heterooligomeric complexes: An update. FEBS Lett. 587, 1959–1969.

Bao E., Sultan K.R., Bernhard N., Hartung J., 2009. Expression of heat shock proteins in tissues from young pigs exposed to transport stress. Dtsch. Tierarztl. Wochenschr. 116(9), 321–325.

Bao E., Sultan K.R., Nowak B., Hartung J., 2008. Expression and distribution of heat shock proteins in the heart of transported pigs. Cell Stress Chaperon. 13, 459–466.

Boncoraglio A., Minoia M., Carr S., 2012. The family of mammalian small heat shock proteins (HSPBs): Implications in protein deposit diseases and motor neuropathies. Int. J. Biochem. Cell Biol. 44, 1657–1669.

Brownell S.E., Becker R.A., Steinman L., 2012. The protective and therapeutic function of small heat shock proteins in neurological diseases. Front. Immunol. 3, 74, doi: 10.3389/fimmu.2012.00074.

Chiral M., Grongnet J.F., Plumier J.C., David J.C., 2004. Effects of hypoxia on stress proteins in the piglet brain at birth. Pediatr Res. 56(5), 775–782.

Danielak-Czech B., Kozubska-Sobocińska A., Kruczek K., Babicz M., Rejduch B., 2014. Physical mapping of the HSPB genes in the domestic and wild pigs. Chrom. Res. 22(3), 413.

David J.C., Boelens W.C., Grongnet J.F., 2006. Up-regulation of heat shock protein HSP 20 in the hippocampus as an early response to hypoxia of the newborn. J. Neurochem. 99, 570–581.

David J.C., Landry J., Grongnet J.F., 2000. Perinatal expression of heat-shock protein 27 in brain regions and nonneural tissues of the piglet. J. Mol. Neurosci. 15(2), 109–120.

Doerwald L., van Rheede T, Dirks R. P., Madsen O., Rexewinkel R., van Gensen S.T., Martens G.J., de Jong W.W., Lubsen N.H., 2004. Sequence and functional conservation of the intergenic region between the head-to-head genes encoding the small heat shock proteins αBcrystallin and HSPB2 in the mammalian lineage. J. Mol. Evol. 59, 674–686.

Dubińska-Magiera M., Jabłońska J., Saczko J., Kulbacka J., Jagla T., Daczewska M., 2014. Contribution of small heat shock proteins to muscle development and function. FEBS Lett. 568, 517– 530.

Golenhofen N., Perng M.D., Quinlan R.A., Drenckhahn D., 2004. Comparison of the small heat shock proteins alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP in heart and skeletal muscle. Histochem. Cell Biol. 122(5), 415–425.

Goureau A., Yerle M., Schmitz A., Riquet J., Millan D., Pinton P., Frelat G., Gellin J., 1996. Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 36, 252–262.

Gustavsson I., 1988. Standard karyotype of the domestic pig. Committee for the Standardized Karyotype of the Domestic Pig. Hereditas 109, 151–157.

Herrera-Mendez C.H., Becila S., Boudjellal A., Ouali A., 2006. Meat ageing: reconsideration of the current concept. Trends Food Sci. Tech. 17, 394–405.

Hu X., Gao Y., Feng C., Liu Q,. Wang X., Du Z., Wang Q., Li N., 2009. Advanced technologies for genomic analysis in farm animals and its application for QTL mapping. Genetica 136, 371–386.

Hu Z.L., Park C.A., Wu X.L., Reccy J.M., 2013. Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res. 41, 871–879, doi: 10.1093/nar/gks1150.

Humphray S.J., Scott C.E., Clark R., Marron B., Bender C., Camm N., Davis J., Jenks A., Noon A., Patel M., Sehra H., Yang F., Rogatcheva M.B., Milan D., Chardon P., Rohrer G., Nonneman D., de Jong P., Meyers S.N., Archibald A., Beever J.E., Schook L.B., Rogers J., 2007. A high utility integrated map of the pig genome. Genome Biol. 8, R139, doi:10.1186/gb2007-8-7-r139.

Hwang I.H., Park B.Y., Kim J.H., Cho S.H., Lee J.M., 2005. Assessment of postmortem proteolysis by gel-based proteome analysis and its relationship to meat quality traits in pig longissimus. Meat Sci. 69(1), 79–91.

Iannuzzi L. Di Berardino D., 2008. Tools of the trade: diagnostics and research in domestic animal cytogenetics. J. Appl. Genet. 49, 357–366.

Iwaki A., Nagano T., Nakagawa M., Iwaki T., Fukumaki Y., 1997. Identification and characterization of the gene encoding a new member of the alpha-crystallin/small hsp family, closely linked to the alphaB-crystallin gene in a head-to-head manner. Genomics 45, 386–94.

Jiang Z., Rothschild M.F., 2007. Swine genome science comes of age. Int. J. Biol. Sci. 3, 129– 131.

Jensen J.H., Conley L.N., Hedegaard J., Nielsen M., Young J.F., Oksbjerg N., Hornshøj H., Bendixen C., Thomsen B., 2012. Gene expression profiling of porcine skeletal muscle in the early recovery phase following acute physical activity. Exp. Physiol. 97(7), 833–848.

Laville E., Sayd T., Terlouw C., Blinet S., Pinguet J., Fillaut M., Glénisson J., Chérel P., 2009. Differences in pig muscle proteome according to HAL genotype: Implications for meat quality defects. J. Agr. Food Chem. 57(11), 4913–4923.

Lametsch R., Bendixen E., 2001. Proteome analysis applied to meat science: Characterizing post mortem changes in porcine muscle. J. Agr. Food Chem. 49(10), 4531–4537.

Lewin H., Larkin D.M., Pontius J., O’Brien S.J., 2009. Every genome sequence needs a good map. Genome Res. 19, 1925–1928.

Liu H., Dicksved J., Lundh T., Lindberg J.E., 2014. Heat shock proteins: intestinal gatekeepers that are influenced by dietary components and the gut microbiota. Pathogens 3, 187–210.

Liu H., Roos S., Jonsson H., Ahl D., Dicksved J., Lindberg J.E., Lundh T., 2015. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells. Physiol. Rep. 3(4), e12355, doi: 10.14814/phy2.12355.

Lomiwes D., Farouk M.M., Wiklund E., Young O.A., 2014. Small heat shock proteins and their role in meat tenderness: A review. Meat Sci. 96, 26–40.

Kwasiborski A., Sayd T., Chambon C., Santé-Lhoutellier V., Rocha D, Terlouw C., 2008. Pig longissimus lumborum proteome: Part II: Relationships between protein content and meat quality. Meat Sci. 80(4), 982–996.

Mymrikov E.V., Seit-Nebi S.S., Gusev N.B., 2011. Large potentials of small heat shock proteins. Physiol. Rev. 91, 1123–1159.

Nefti O., Grongnet J.F, David J.C., 2005. Overexpression of alphaB crystallin in the gastrointestinal tract of the newborn piglet after hypoxia. Shock 24(5), 455– 461.

Ouali A., Herrera-Mendez C.H., Coulis G., Becila S., Boudjellal A., Aubry L., Sentandreu M.A., 2006. Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Sci. 74, 44–58.

Rothschild M.F., Hu Z.L., Jiang Z., 2007. Advances in QTL mapping in pigs. Int. J. Biol. Sci. 3, 192–197.

Tallot P., Grongnet J.F., David J.C., 2003. Dual perinatal and developmental expression of small heat shock proteins alphaB-crystallin and HSP27 in different tissues of the developing piglet. Biol. Neonate 83(4), 281–288.

Taylor R.P., Benjamin I.J., 2005. Small heat shock proteins: a new classification scheme in mammals. J. Mol. Cell. Cardiol. 38, 433–444.

Vingborg R.K.K., Gregersen V.R., Zhan B., Panitz F., Høj A., Sørensen K.K., Madsen L.B., Larsen K., Hornshøj H., Wang X., Bendixen C., 2009. A robust linkage map of the porcine autosomes based on gene-associated SNPs. BMC Genomics 10, 134, doi:10.1186/14712164-10-134.

Verschuure P., Tatard C., Boelens W.C., Grongnet J.F., David J.C., 2003. Expression of small heat shock proteins HspB2, HspB8, Hsp20 and cvHsp in different tissues of the perinatal developing pig. Eur. J. Cell Biol. 82(10), 523–530.

Wettstein G., Bellaye P.S., Micheau O., Bonniaud P., 2012. Small heat shock proteins and the cytoskeleton: An essential interplay for cell integrity? Int. J. Biochem. Cell B. 44(10), 1680–1686.

Whyte J.J., Prather R.S., 2011. Genetic modifications of pigs for medicine and agriculture. Mol. Reprod. Dev. 78(10–11), 879–891.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 4 5 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.