Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 33 Nr 4 (2015)

Articles

Chromosomowa lokalizacja genów kodujących małe białka szoku cieplnego (HSPB) u bydła i owiec

Przesłane: lipca 30, 2019
Opublikowane: 2015-12-02

Abstrakt

Produkty genów małych białek szoku cieplnego (HSPB) wykazują aktywność chaperonową i neuroprotekcyjną, przyczyniając się do stabilizacji równowagi komórkowej i cytoszkieletu neuronów w warunkach stresu oksydacyjnego lub termicznego. Celem badań była chromosomowa lokalizacja pięciu genów małych białek szoku cieplnego (HspB1, HspB2, CRYAB – alternatywna nazwa HspB5, HspB6 i HspB8) u bydła i owiec, przy zastosowaniu techniki FISH  z sondami uzyskanymi z klonów BAC (pochodzących z biblioteki genomowej CHORI-240 Bovine BAC Library) zawierających sekwencje tych genów. Przed hybrydyzacją in situ, przeprowadzoną na chromosomach metafazowych barwionych techniką prążków DAPI, potwierdzono obecność badanych genów w wyselekcjonowanych klonach metodą PCR z wykorzystaniem genowo specyficznych starterów. W wyniku przeprowadzonych eksperymentów uzyskano sygnały FISH  w następujących regionach chromosomów bydła (BTA) i owiec (OAR): BTA25q22/OAR24q22 (HSPB1), BTA15q14-21/OAR15q14-21 (HSPB2 and CRYAB), BTA18q24/OAR14q24 (HSPB6), BTA17q24-25/OAR17q24-25 (HSPB8). Badania umożliwiły określenie fizycznej lokalizacji badanych genów na mapach genomowych tych gatunków i potwierdziły wysoki poziom konserwatyzmu autosomów u Bovidae. Uzyskane wyniki mogą dostarczyć przydanych informacji dotyczących genetycznego podłoża chorób neurodegeneracyjnych u zwierząt hodowlanych.

Bibliografia

Acunzo J., Katsogiannou M., Rocchi P., 2012. Small heat proteins HSP27 (HspB1), αβ-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int. J. Biochem. Cell B. 44, 1622–1631.

Arrigo A.P., 2012. Pathology–dependent effects linked to small heat shock proteins expression: an update. Scientifica 185641, doi: org/10.6064/2012/185641.

Arrigo A.P., 2013. Human small heat shock proteins: Protein interactomes of homo- and heterooligomeric complexes: An update. FEBS Lett. 587, 1959–1969.

Bae S.E., Jung S, Kim H.Y., Son H.S., 2012. Correlation analysis for the incubation period of prion disease. Prion 6, 276–281.

Boncoraglio A., Minoia M., Carr S., 2012. The family of mammalian small heat shock proteins (HSPBs): Implications in protein deposit diseases and motor neuropathies. Int.l J. Biochem. Cell Biol. 44, 1657–1669.

Brown C.A., Schmidt C., Poulter M., Hummerich H., Klӧhn P.C., Jat P., Mead S., Collinge J., Lloyd S.E., 2014. In vitro screen of prion disease susceptibility genes using the scrapie cell assay. Hum. Mol. Genet. 2, 5102–5108.

Brownell S.E., Becker R.A., Steinman L., 2012. The protective and therapeutic function of small heat shock proteins in neurological diseases. Front. Immunol. 3, 74, doi: 10.3389/fimmu. 2012.00074.

Chowdhary B.P., Fronicke L., Gustavsson I., Scherthan H., 1996. Comparative analysis of the cattle and human genomes: detection of ZOO-FISH and gene mapping-based chromosomal homologies. Mamm. Genome 7, 297–302.

Danielak-Czech B., Kozubska-Sobocińska A., Bąk A., 2014a. FISH-based comparative mapping of the Hsp27 gene on chromosomes of the domestic Bovids. Chromosome Res. 22, 414–414.

Danielak-Czech B., Kozubska-Sobocińska A., Kruczek K., 2014b. Chromosomal assignment of the small heat protein genes in the sheep genome. Chrom. Res. 22, 412–413.

Darlymple B.P., Kirkness E.F., Nefedov M., McWillam S., Ratnakumar A., Barris W., Zhao S., Shetty J., Maddox J.F., O’Grady M., Nicholas F., Crawford A.M., Smith T., de Jong P..J, McEwan J., Oddy V.H., Cockett N.E., International Sheep Genomics Consortium, 2007. Using comparative genomics to reorder the human genome sequence into a virtual sheep genome. Genome Biol. 8, R152, doi: 10.1186/gb-2007-8-7-r152.

De Lorenzi L., Molteni L. Parma P., 2010. FISH mapping in cattle (Bos taurus L.) is not yet of fashion. J. Appl. Genet. 51, 497–499.

Di Berardino D., Di Meo G.P., Gallagher D.S., Hayes H., Iannuzzi L., 2001. International system for chromosome nomenclature of domestic bovids ISCNDB 2000. Cytogenet. Cell Genet. 92, 283–299.

Everts-van der Wind A., Kata S.R., Band M.R., Rebeitz M., Larkin D.M., Everts R.E., Green C.A., Liu L., Natarajan S., Goldammer T., Lee J.H., McKay S., Womack J.E., Lewin H.A., 2004. A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates. Genome Res. 14, 1424–1437.

Goldammer T., Di Meo G.P., Lühken G., Drӧgemüller C., Wu C.H., Kijas J., Dalrymple B.P., Nicholas F.W., Maddox J.F., Iannuzzi L., Cockett N.E., 2009. Molecular cytogenetics and gene mapping in sheep (Ovis aries, 2n = 54). Cytogenet. Genome Res. 126, 63–76.

Hernandez-Sanchez J., Waddington D., Wiener P., Haley C.S., Williams J.L., 2002. Genome-wide search for markers associated with bovine spongiform encephalopathy. Mamm. Genome 13, 164–168.

Hu Z.L., Park C.A., Wu X.L., Reccy J.M., 2013. Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res. 41, 871–879, doi: 10.1093/nar/gks1150.

Iannuzzi L. Di Berardino D., 2008. Tools of the trade: diagnostics and research in domestic animal cytogenetics. J. Appl. Genet. 49, 357–366.

Iannuzzi L., King W.A., Di Berardino D., 2009. Chromosome evolution in domestic bovids as revealed by chromosome banding and FISH-mapping techniques. Cytogenet. Genome Res. 126, 49–62.

Itoch T., Watanabe T., Ihara N., Mariani P., Beattie C.W., Sugimoto Y., Takasuga A., 2005. A comprehensive radaition hybrid map of the genome comprising 5593 loci. Genomics 85, 413–424.

Iwaki A., Nagano T., Nakagawa M., Iwaki T., Fukumaki Y., 1997. Identification and characterization of the gene encoding a new member of the alpha-crystallin/small hsp family, closely linked to the alphaB-crystallin gene in a head-to-head manner. Genomics 45, 386–94.

Lewin H., Larkin D.M., Pontius J., O’Brien S.J., 2009. Every genome sequence needs a good map. Genome Res. 19, 1925–1928.

Marcos-Carcavilla A., Calvo J.H., Gonzáles C., Moazami-Goudarzi K., Laurent P., Bertaud M., Hayes H., Beattie A.E., Serrano C.,Lyahyai J., Martin-Burriel I., Serrano M., 2008. Structural and functional analysis of the HSP90AA1 gene: distribution of polymorphisms among sheep with different responses to scrapie. Cell Stress Chaperone 13, 19–29.

Marcos-Carcavilla A., Moreno C., Serrano M., Laurent P., Cribiu E.P., Andreoletti O., Ruesche J., Weisbecker J.L., Calvo J.H., Moazami-Goudarzi K., 2010. Polymorphisms in the HSP90AA1 5’ flanking region are associated with scrapie incubation period in sheep. Cell Stress Chaperone 15, 343–349.

Moreno C.R., Cosseddu G.M., Schibler L., Roig A., Moazami-Goudarzi K., Andreoletti O., Eychenne F., Lajous D., Schelcher F., Cribiu E.P., Laurent P., Vaiman D., Elsen J.M., 2008. Identification of new quantitative trait loci (other than the PRNP gene) modulating the scrapie incubation period in sheep. Genetics 179, 723–726.

Moreno C.R., Moazami-Goudarzi K., Briand S., Robert-Granié C., Weisbecker J.L., Laurent P., Cribiu E.P., Haley C.S., Andreoletti O., Bishop S.C., Pong-Wong R., 2010. Mapping of quantitative trait loci affecting classical scrapie incubation time in a population comprising several generations of scrapie-infected sheep. J. Gen. Virol. 91, 575–579.

Sawiris G.P., Becker K.G., Elliott E.J., Moulden R., Rohwer R.G., 2007. Molecular analysis of bovine spongiform encephalopathy infection by cDNA arrays. J. Gen. Virol. 88, 1356–1362.

Schibler L., Di Meo G.P., Iannuzzi L., 2009. Molecular cytogenetics and comparative mapping in goats (Capra hircus, 2n = 60). Cytogenet. Genome Res. 126, 77–85.

Serrano C., Bolea R., Lyahyai J., Filali H., Varona L., Marcos-Carcavilla A., Acin C., Calvo J.H., Serrano M. Badiola J.J., 2011. Changes in HSP gene and protein expression in natural scrapie with brain damage. Vet. Res. 42: 13, doi: 10.1186/1297-9716-42-13.

Tortosa R., Vidal E, Costa C., Alamillo E., Torres J.M., Ferrer I., Pumarola M., 2008. Stress response in the central nervous system of a transgenic mouse model of bovine spongiform encephalopathy. Vet. J. 178, 126–129.

Vidal E., Acín C., Foradada L, Monzόn M., Márquez M., Monleon E., Pumarola M., Badiola J.J., Bolea R., 2009. Immunohistochemical characterization of classical scrapie neuropathology in sheep. J. Comp. Pathol. 141, 135–146.

Wettstein G., Bellaye P.S., Micheau O., Bonniaud P., 2012. Small heat shock proteins and the cytoskeleton: An essential interplay for cell integrity? Int. J. Biochem. Cell B. 44(10), 1680–1686.

Zhang C., de Koning D.J., Hernandez-Sanchez J., Haley C.S., Williams J.L., Wiener P., 2004. Mapping of multiple quantitative trait loci affecting bovine spongiform encephalopathy. Genetics 167, 1863–1872.

Downloads

Download data is not yet available.

Podobne artykuły

1 2 3 4 5 6 7 8 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.