Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 28 Nr 2 (2018)

Articles

Prozdrowotne działanie kwasu elagowego i elagotaniny wybranych gatunków z rodzaju Rubus – Przegląd

DOI: https://doi.org/10.24326/ah.2018.2.1
Przesłane: stycznia 3, 2019
Opublikowane: 2018-06-04

Abstrakt

Liczne gatunki roślin z rodzaju Rubus zawierają substancje biologicznie czynne stosowane w profilaktyce i leczeniu fitoterapeutycznym różnych schorzeń. Wśród tych związków aktywnych kwas elagowy i elagotaniny wykazują szerokie różnorodne właściwości prozdrowotne, m.in. antyoksydacyjne, zwiększające krzepnięcie krwi, przeciwzapalne, przeciwwirusowe (hamujące aktywność wirusa HIV), antybakteryjne, antykancerogenne, antymutagenne. Kwas elagowy hamuje aktywność czynników rakotwórczych: benzo(a)pyrene, aflatoksyny B1, związków nitrozowych. Może być stosowany w leczeniu choroby Alzheimera. Elagotaniny będące prekursorami kwasu elagowego wpływają na aktywność enzymów zaangażowanych w prawidłowe funkcjonowanie naczyń systemu krwionośnego. Dwie główne elagotaniny, sangwina H-6 i lambertianina C, są najważniejszymi związkami zapewniającymi własności antyoksydacyjne owoców malin. Owoce i liście roślin z rodzaju Rubus, zawierające fitoterapeutyczne związki, m.in. kwas elagowy i elagotaniny, są wykorzystywane do produkcji ciastek, słodyczy, dżemów, syropów, soków, herbatek, napojów alkoholowych i niealkoholowych. Należy propagować uprawę roślin z rodzaju Rubus i spożycie owoców zawierających kwas elagowy i elagotaniny ze względu na ich prozdrowotne działanie, które może być wykorzystane w profilaktyce wielu chorób. Rośliny z rodzaju Rubus mogą być także wykorzystywane jako źródło fitozwiązków w przemyśle farmaceutycznym, kosmetycznym i spożywczym.

Bibliografia

Aldebasi Y.H., Rahmani A.H., Khan A.A., Aly S.M., 2013. The effect of vascular endothelial growth factor in the progression of bladder cancer and diabetic retinopathy. Int. J. Clin. Exp. Med. 6(4), 239–251.

Ancos B. de, González E.M., Cano P., 2000. Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J. Agric. Food Chem. 48(10), 4565–4570.

Aviram M., Volkova N., Coleman R., Dreher M., Reddy M.K., Ferreira D., Rosenblat M., 2008. Pomegranate phenolics from the peels, arils, and flowers are antiatherogenic: Studies in vivo in atherosclerotic apolipoprotein e-deficient (e0) mice and in vitro in cultured macrophages and lipoproteins. J. Agric. Food Chem. 56(3), 1148–1157.

Baranowska A., Radwańska K., Zarzecka K., Gugała M., Mystkowska I., 2015. Właściwości prozdrowotne owoców maliny właściwej (Rubus idaeus L.) [Health benefits of red raspberry fruit (Rubus idaeus L.)]. Probl. Hig. Epidemiol. 96(2), 406–409.

Beekwilder J., Jonker H., Meesters P., Hall R.D., Meer I.M. van der, Vos C.H.R. de, 2005. Antioxidant in raspberry: on-line analysis links antioxidant activity to a diversity of individual metabolites. J. Agric. Food Chem. 53(9), 3313–3320.

Chwil M., Kostryco M., 2018. Bioactive compounds and antioxidant activity of Rubus ideaus L. leaves. Acta Sci. Pol., Hortorum Cultus 17(2), 135–147.

Corthout J., Peiters L.A., Claeys M., Berghe D.A., Vleitinck A.J., 1991. Antiviral ellagitannins from Spondias mombin. Phytochemistry 30(4), 1129–1130.

Cybulsky M.I., Liyama K., Li H., Zhu S., Chen M., Liyama M., Davis V., Guttieres-Ramos C., Connely W.P., Milstone D.S., 2001. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest. 107(10), 1255–1262.

Das M., Bickers D.R., Mukhtar H., 1985. Effect of elagic acid on hepatic and pulmonary xenobiotic metabolism in mice: studies on the mechanism of its anticancerogenic action. Carcinogenesis 6(10), 1409–1413.

Dziedzic S.Z., Hudson B.J.F., 1984. Phenolic acids and related compounds as antioxidant for edible oils. Food Chem. 14(1), 45–51.

Espin J.C., Gonzales-Barrio R., Cerda B., Lopez-Bote C., Rey A.I., Tomas-Barberan F.A., 2007. Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans. J. Agric. Food Chem. 55(25), 10476–10485.

Farbood Y., Sarkaki A., Dianat M., Khodadadi A., Haddad M.K, Mashhadizadeh S., 2015. Ellagic acid prevents cognitive and hippocampal long-term potentiation deficits and brain inflammation in rat with traumatic brain injury. Life Sci. 124, 120–127.

Fazio A., Plastina P., Meijerink J., Witkamp R.F., Gabriele B., 2013. Comparative analyses of seeds of wild fruits of Rubus and Sambucus species from Southern Italy: Fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts. Food Chem. 140(4), 817–824.

Feng Y., Yang SG., Du X.T., Zhang X., Sun X.X., Zhao M., Sun G.Y., Liu R.T., 2009. Ellagic acid promotes A beta 42 fibrillization and inhibits A beta 42-induced neurotoxicity. Biochem. Biophys. Res. Commun. 390(4), 1250–1254.

Flamini G., Catalano S., Caponi C., Panizzi L., Morelli I., 2002. Three anthrones from Rubus ulmifolius. Phytochemistry 59(8), 873–876.

George B.P., Parimelazhagan T., Chandran R., 2014. Anti-inflammatory and wound healing properties of Rubus fairholmianus Gard. root – An in vivo study. Industrial Crops Prod. 54,
216–225.

George B.P., Parimelazhagan T., Chandran R., 2013. Evaluation of total phenolic content, antioxidant and analgesic potential of Rubus fairholmianus gard. Int. J. Pharm. Pharm. Sci. 5(3), 484–488.

Gonzáles-Barrio R., Edwards C.A., Crozier A., 2011. Colonic metabolism of ellagitannins, ellagic acid and raspberry anthocyanins: in vivo and in vitro studies. Drug. Metab. Dispos. 39(9), 1680–1688.

González-Sarrías A., Giménez-Bastida J.A., García-Conesa M.T., Gómez-Sánchez M.B., García-Talavera N.V., Gil-Izquierdo A., Sánchez-Alvarez C., Fontana-Compian L.O., Morga-Egea J.P., Pastor-Quirante F.A., Martínez-Díaz F., Tomás-Barberán F.A., Espín J.C., 2010. Occurence of urolithins, gut microbiota ellagic acid metabolites and proliferation markers expression response in the human prostate gland upon comsumption of walnuts and pomegranate juice. Mol. Nutr. Food Res. 54(3), 311–322.

Grundhöfer P., Niemetz R., Schilling G., Gross G.G., 2001. Biosynthesis and subcellular distribution of hydrolyzable tannins. Phytochemistry 57(6), 915–927.

Gudej J., Tomczyk M., 2004. Determination of flavonoids, tannins and ellagic acid in leaves from Rubus L. species. Arch. Pharm. Res. 27(11), 1114–1119.

Häkkinen S., Heinonen M., Kärenlampi S., Mykkänen H., Ruuskanen J., Törrönen R., 1999. Screening of selected flavonoids and phenolic acids in 19 berries. Food Res. Int. 32(5),
345–353.

Han C.H., Ding H.M., Casto B., Stoner G.D., D’Ambrosio S.M., 2005. Inhibition of the growth of premalignant and malignant human oral cell lines by extracts and components of black raspberries. Nut. Cancer-Int. J. 51(2), 207–217.

Hossen M.S., Ali M.Y., Jahurul M.H.A., Abdel-Daim M.M., Gan S.H., Khalil M.I., 2017. Beneficial roles of honey polyphenols against some human degenerative diseases: a review. Pharmacol. Rep. 69, 1194–1205.

Hummer K.E., 2010. Rubus pharmacology: antiquity to the present. HortScience 45(11), 1587–1591.

Im S.E., Nam T.G., Lee H., Han M.W., Heo H.J., Koo S.I., Lee C.Y., Kim D.O., 2013. Anthocyanins in the ripe fruits of Rubus coreanus Miquel and their protective effect on neuronal PC-12 cells. Food Chem. 139(1), 604–610.

Jan G., Khan M.A., Gul F., 2008. Ethnomedicinal plants used against diarrhea and dysentery in Dir Kohistan valley (NWFP), Pakistan. Ethnobot. Leaflets 84(1), 620–637.

Juranic Z., Zizak Z., Tasic S., Petrovic S., Nidzovic S., Leposavic A., 2005. Antiproliferative action of water exctracts of seed or pulp of five different raspberry cultivars. Food Chem. 93, 39–45.

Kalt W., Forney C.F., Martin A., Prior R.L., 1999. Antioxidant capacity, vitamin C, and anthocyaninsafyer storage of small fruits. J. Agric. Food Chem. 47(11), 4638–4644.

Kim S., Kim C.K., Lee K.S., Kim J.H., Hwang H., Jeoung D., Kwon Y.G., 2013. Aqueous extract of unripe Rubus coreanus fruit attenuates atherosclerosis by improving blood lipid profile and inhibiting NF-κB activation via phase II gene expression. J. Ethnopharmacol. 146(2), 515–524.

Krauze-Baranowska M., Głód D., Kula M., Majdan M., Hałasa R., Matkowski A., Kozłowska W., Kawiak A., 2014. Chemical composition and biological activity of Rubus idaeus shoots –
a traditional herbal remedy of Eastern Europe. BMC Compl. Altern. Med. 14(1), 480–492.

Larrosa M., Tomas-Barberan F.A., Espin J.C., 2005. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. J. Nutr. Biopchem. 17(9), 611–625.

Li W., Fu H., Bai H., Sasaki T., Kato H., Koike K., 2009. Triterpenoid saponins from Rubus ellipticus var. obcordatus. J. Nat. Prod. 72(10), 1755–1760.

Maas J.L., Galletta G.J., Stoner G.D., 1991. Ellagic acid, an anticarcinogen in fruits, especially in strawberries: A review. HortScience 26(1), 10–14.

Maatta-Riihinen K.R., Kamal-Eldin A., Torronen A.R., 2004. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). J. Agric. Food Chem. 52(20), 6178–6187.

Maghradze D., Bobokashvili Z., Kvaliashvili V., 2011. Minor and underutilized fruits in Georgia and their wild relatives. In: M.K. Aradhya, D.A. Kluepfel (eds), I International Symposium on Wild Relatives of Subtropical and Temperate Fruit and Nut Crops, 19–20 March, Davis, CA, USA, 948, 41–48.

Malini P., Kanchana G., Rajadural M., 2011. Antidiabetic efficiacy of ellagic acid instrepstreptozotocin induced diabetes mellitus in albino wistar rats. Asian J. Pharm. Clin. Res. 4(13), 127–128.

Mullen W., MccGinn J., Lean M.E.J., MacLean M.R., Gardner P., Duthie G.G., Yokota T., Crozier A., 2002. Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. J. Agric. Food Chem. 50(18), 5191–5196.

Nigris F. de, Williams-Ignarro S., Sica V., Lerman L.O., D’Armiento F.P., Byrns R.E. Casamassimi A., Carpentiero D., Schiano C., Sumi D., Fiorito C., Ignarro L.J., Napoli C., 2007. Effects of a pomegranate fruit extract rich in punicalagin on oxidation-sensitive genes and eNOS activity at sites of perturbed shear stress and atherogenesis. Cardiovasc. Res. 73(2), 414–423.

Nigris F. de, Willliams-Ignarro S., Lerman L.O., Crimi E., Botti C., Mansueto G., D’Armiento F.P., De Rosa G., Sica V., Ignarro L.J., Napoli C., 2005. Beneficial effects of pomegranate juice on oxidation-sensitive genes and endothelial nitric oxide synthase activity at sites of perturbed shear stress. Proc. Natl. Acad. U.S.A. 102(13), 4896–4901.

Okuda T., Kimura Y., Yoshida T., Hatano H., Okuda H., Arichi S., 1983. Studies on the activities of tannins and related compounds from medicinal plants and drugs. Inhibitory effects on lipid peroxidation in mitochondria and microsomes of liver. Chem. Pharm. Bul. 31(5), 1625–1631.

Oliveira M.R. de, 2016. The effects of ellagic acid upon brain cells: a mechanistic view and future directions. Neurochem. Res. 41(6), 1219–1228.

Olsson M.E., Gustavsson K.E., Andersson S., Nilsson A., Duan R.D., 2004. Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlation with antioxidant levels. J. Agric. Food Chem. 52(24), 7264–7271.

Papotusi Z., Kassi E., Chinou I., Halabalalki M., Skaltsuonis L.A., Moutsatsou P., 2008. Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Br. J. Nutr. 99(4), 715–722.

Patel A.V., Rojas-Vera J., Dacke C.G., 2004. Therapeutic constituents and actions of Rubus species. Curr. Med. Chem. 11(11), 1501–1512.

Pavlovich N., 2000. Herbal remedies for women’s wellness. In: E. Olshansky (ed.), Integrated women’s health: holistic approaches for comprehensive care. MD, Aspen Publishers, Gaithersburg, 180–224.

Pinto A., Redondo A., Zamora P., Castelo B., Espinosa E., 2010. Angiogenesis as a therapeutic target in urothelial carcinoma. Anticancer Drugs 21(10), 890–896.

Pinto S.M., Lajolo F.M., Genovese M.I., 2008. Bioactive compounds and quantification of total ellagic acid in strawberries (Fragaria × ananassa Duch.). Food Chem. 107(4), 1629–1635.

Popović Z., Smiljanić M., Kostić M., Nikić P., Janković S., 2014. Wild flora and its usage in traditional phytotherapy (Deliblato Sands, Serbia, South East Europe). Indian J. Tradit. Knowl. 13(1), 9–35.

Quave C.L., Estévez-Carmona M., Compadre C.M., Hobby G., Hendrickson H., Beenken K.E., Smeltzer M.S., 2012. Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PloS One 7(1), e28737.

Rao C.V., Tokumo K., Rigoty J., Zang E., Kelloff G., Reddy B.S., 1991. Chemoprevention of colon carcinogenesis by dietary administration of piroxicam, α-difluoromethylornithine, 16α-
-fluor-5-androsten-17-one and ellagic acid invidually and in combination. Cancer Res. 51(17), 4528–4534.

Riaz M., Ahmad M., Rahman N., 2011. Antimicrobial screening of fruit, leaves, root and stem of Rubus fruticosus. J. Med. Plants Res. 5(24), 5920–5924.

Rommel A., Wrolstad R.E., 1993. Ellagic acid content of red raspberry juice as influenced by cultivar, processing, and environmental factors. J. Agric. Food Chem. 41(11), 1951–1960.

Ross H.A., McDougall G.J., Stewart D., 2007. Antiproliferative activity is predominantly associated with ellagitannins in raspberry extracts. Phytochemistry 68(2), 218–228.

Sayer J.M., Yagi H., Wood A.W., 1982. Extremely facile reaction between the ultimate carcinogen benzo[a]pyrene-7,8-diol-9,10-epoxide and ellagic acid. J. Am. Chem. Soc. 104(20), 5562–5564.

Seeram N.P., Lee R., Heber D., 2004. Bioavailability of ellagic acid in human plasma after consumption of ellagitannins from pomegranate (Punica granatum L.) juice. Clin. Chim. Acta 348(1), 63–68.

Segantini D.M., Leonel S., Silva Ripardo A.K. da, Tecchio M.A., Souza M.E. de, 2015. Breaking dormancy of “Tupy” blackberry in subtropical conditions. Am. J. Plant Sci. 6(11), 1760–1767.

Sepúlveda L., Ascacio A., Rodríguez-Herrera R., Aguilera-Carbó A., Aguilar C.N., 2011. Ellagic acid: biological properties and biotechnological development for production processes. Afr. J. Biotechnol. 10(22), 4518–4523.

Soong Y., Barlow P.J., 2006. Quantification of gallic acid and ellagic acid from langan (Dimocarpus longan Lour.) seed and mango (Mangifera indica L.) kernal and their effects on antioxidant activity. Food Chem. 97(3), 524–530.

Souza P. de, Boeing T., Somensi L.B., Cechinel-Zanchett C.C., Bastos J.K., Petreanu M., Niero R., Cechinel-Filho V., Silva L.M. da, Andrade S.F. de, 2017. Diuretic effect of extracts, fractions and two compounds 2α,3β,19α-trihydroxy-urs-12-en-28-oic acid and 5-hydroxy-3,6,7,8,4'-pen- tamethoxyflavone from Rubus rosaefolius Sm. (Rosaceae) leaves in rats. Naunyn Schmiedebergs Arch. Pharmacol. 390(4), 351–360.

Sparzak B., Merino-Averalo M., VanderHeyden Y., Krauze-Baranowska M., Majdan M., Fecka I., Głód D., Baczek T., 2010. HPLC analysis of polyphenols in the fruits of Rubus idaeus L. (Rosaceae). Nat. Prod. Res. 24(19), 1811–1822.

Stoner G.D., Morse M.A., 1997. Isocyanates and plant polyphenols as inhibitors of lung and esophaegal cancer. Cancer Lett. 114(1–2), 113–119.

Take Y.Y., Inoue S., Nakamura H.S., Kubo A., 1989. Coomparative studies of the inhibitory properties of antibiotics on human immunodeficiency virus and avian myeloblastis reverse transtriptases and cellular DNA polymerases. J. Antibiot. 42(1), 107–115.

Talcott S.T., Lee J.H., 2002. Ellagic acid and flavonoid antioxidant content of muscadine wine and juice. J. Agric. Food Chem. 50(11), 3186–3192.

Tanaka T., Tachibana H., Nonaka G., Nishioka I., Hsu F.L., Kohda H., Tanaka O., 1993. Tannins and related compounds. CXXII. New dimeric, trimeric and tetrameric ellagitannins, lambertianins AD, from Rubus lambertianus Seringe. Chem. Pharm. Bull. 41(7), 1214–1220.

Thiem B., Goœliñska O., 2004. Antimicrobial activity of Rubus chamaemorus leaves. Fitoterapia 75(1), 93–95.

Truchado P., Larrosa M.T., Garcia-Conesa M.T., Cerdá B., Vidal-Guevara M.L., Tomás-Barberán F.A., Espín J.C., 2012. Strawberry processing does not affect thr production and urinary excrection of urothilins, ellagic acid metabolites in humans. J. Agric. Food Chem. 60(23), 5749–5754.

Tulyathan V., Boulton R.B., Singleton V.L. 1989. Oxygen uptake by gallic acid as a model for similar reaction in wines. J. Agr. Foood Chem. 37(4), 844–849.

Türk G., Sönmez M., Ceribaşi A.O., Yüce A., Ateşşahin A., 2010. Attenuation of cyclosporine A-induced testicular and spermatozoal damages associated with oxidative stress by ellagic acid. Int. Immunopharmacol. 10, 177–182.

Verde S.C., Trigo M.J., Sousa M.B., Ferreira A., Ramos A.C., Nunes I., Botelho M.L., 2013. Effects of gamma radiation on raspberries: safety and quality issues. J. Toxicol. Environ. Health, Part A, 76(4–5), 291–303.

Whitley A.C., Stoner G.D., Darby M.V., Walle T., 2003. Intestinal epithelial cell accumulation of the cancer preventive polyphenol ellagic acid-extensive binding to protein and DNA. Biochem. Pharmacol. 66(6), 907–915.

Zafrilla P., Federico F., Tomás-Barberán F.A., 2001. Effect of processing and storage of on the antioxidant ellagic acid derivatives and flavonoids of red raspberry (Rubus idaeus) jams. J. Agric. Food Chem. 49(8), 3651–3655.

Zhang H., Zhao L., Li H., Xu H., Chen W., Tao L., 2014. Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol. Med. 11(2), 92–100.

Zhang Y., Zhang Z., Yang Y., Wang Y., Zu X., Guan D., 2011. Diuretic activity of methanol extracts of Rubus idaeus L. Int. J. Biol. 3(2), 75–81.

Downloads

Download data is not yet available.

Inne teksty tego samego autora

Podobne artykuły

<< < 1 2 3 4 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.