Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 34 Nr 2 (2025)

Articles

Wyzwania branży pieczarkarskiej w Polsce oraz jej rozwój przez badania i innowacje

DOI: https://doi.org/10.24326/ah.2025.5567
Przesłane: 9 lipca 2025
Opublikowane: 31.12.2025

Abstrakt

Artykuł przedstawia kompleksową analizę obecnego stanu sektora pieczarkarskiego w Polsce, od lat będącej światowym liderem pod względem eksportu. Autorzy diagnozują główne zagrożenia dla dalszego rozwoju branży, w tym niedobór pracowników, rosnące koszty energii, ograniczoną dostępność torfu, nieuznawanie zużytego podłoża za nawóz oraz niewystarczające wsparcie instytucjonalne. W tekście podkreślono potrzebę konsolidacji środowiska pieczarkarskiego oraz budowy nowoczesnej infrastruktury badawczo-rozwojowej. Zidentyfikowano również szanse dla sektora, w tym możliwość pozyskania środków UE na innowacje oraz powrót do ogólnokrajowych konferencji branżowych. Artykuł ma charakter przeglądowy i strategiczny.

Bibliografia

  1. Agro-Projects, 2025. Nowoczesne pieczarkarnie od A do Z. https://www.agro-projects.eu/oferta/przemysl-grzybowy/pieczarkarnia-od-a-do-z/?utm_source=chatgpt.com [dostęp: 23.11.2025].
  2. Aiduang W., Jatuwong K., Kiatsiriroat T. i in., 2020. Spent mushroom substrate-derived bio-char and its applications in modern agricultural systems: an extensive overview. J. Envi-ron. Manag. 270, 110785. https://doi.org/10.1016/j.jenvman.2020.110785
  3. Albayrak U., Golcuk A., Aktas S., Coruh U., Tasdemir S., Baykan O. K., Classification and analysis of Agaricus bisporus diseases with pre-trained deep learning models 2025. Agro-nomy 15(1), 226. https://doi.org/10.3390/agronomy15010226
  4. Andrade M.C.N., Zied D.C., Almeida Minhoni M.T. i in., 2008. Yield of four Agaricus bispo-rus strains in three compost formulations and chemical composition analyses of the mushrooms. Braz. J. Microbiol. 39(3), 593–598. https://doi.org/10.1590/S1517-838220080003000034
  5. Badoni P., Siddiqui S.A., 2025. Metamorphosis of mushroom production from tradition to automation. Discov. Appl. Sci. 7, 974. https://doi.org/10.1007/s42452-025-07517-w
  6. Barauskas R., Kriščiūnas A., Čalnerytė D., Pilipavičius P., Fyleris T., Daniulaitis V., Mikalauskis R., 2022. Approach of AI-based automatic climate control in white button mushroom growing hall. Agriculture 12(11), 1921. https://doi.org/10.3390/agriculture12111921
  7. Beyer D.M., 2023a. Growing mushrooms – microbial activity in substrate, https://extension.psu.edu/growing-mushrooms-microbial-activity-in-substrate/ [dostęp: 23.11.2025].
  8. Beyer D.M., 2023b. Seeding substrate and management of growing Agaricus bisporus, https://extension.psu.edu/seeding-substrate-and-management-of-growing-agaricus-bisporus [dostęp: 23.11.2025].
  9. Beyer D.M., 2024. Basic procedures for agaricus mushroom growing, https://extension.psu.edu/basic-procedures-for-agaricus-mushroom-growing [dostęp: 23.11.2025].
  10. Büchner R., Vörös M., Allaga H. i in., 2021. Selection and characterization of a Bacillus strain for potential application in industrial production of white button mushroom (Agaricus bisporus). Agronomy 12(2), 467. https://doi.org/10.3390/agronomy12020467
  11. Cardwell G., Bornman J.F., James A.P. i in., 2018. A review of mushrooms as a potential source of dietary vitamin D. Nutrients 10(10),1498. https://doi.org/10.3390/nu10101498.
  12. Carrasco J., García-Delgado C., Lavega R. i in., 2020. Holistic assessment of the microbiome dynamics in the substrates used for commercial champignon (Agaricus bisporus) cultiva-tion. Microb. Biotechnol. 13, 1225–1239. https://doi.org/10.1111/1751-7915.13639
  13. Carrasco J., Zied D.C., Pardo J.E. i in., 2018. Supplementation in mushroom crops and its impact on yield and quality. AMB Expr 8, 146. https://doi.org/10.1186/s13568-018-0678-0
  14. Carroll, A.D., Schisler L.C. Jr, 1976. Delayed release nutrients for mushroom culture. Pat. US3942969A, https://patents.google.com/patent/US3942969A/en [dostęp: 23.11.2025].
  15. Chong J.L., Chew K.W., Peter A.P. i in., 2023. Internet of things (IoT)-based environmental monitoring and control system for home-based mushroom cultivation. Biosensors 13, 98. https://doi.org/10.3390/bios13010098
  16. CMGA, 2005. Best environmental management practices for mushroom growers in Canada. https://www.canadianmushroom.com/uploads/userfiles/files/Best_Practices_Guide.pdf [dostęp: 23.11.2025].
  17. Coello-Castillo M.M., Sánchez J.E., Royse D.J., 2009. Production of Agaricus bisporus on substrates pre-colonized by Scytalidium thermophilum and supplemented at casing with protein-rich supplements. Biores. Techn. 100(19), 4488–4492. https://doi.org/10.1016/j.biortech.2008.10.061
  18. Cowan N., 2010. The magical mystery four: how is working memory capacity limited, and why?. Curr. Directions Psychol. Sci. 19(1), 51–57. https://doi.org/10.1177/0963721409359277
  19. Dajewski D., 2022. Why is mushroom growing in the US and Europe different?. New Food Magazine, 20 maja 2022. https://www.newfoodmagazine.com/article/165063/why-is-mushroom-growing-in-the-us-and-europe-different/[dostęp: 23.11.2025].
  20. Dawadi E., Magar P.B., Bhandari S. i in., 2022. Nutritional and post-harvest quality preserva-tion of mushrooms: A review. Heliyon 8(12), e12093. https://doi.org/10.1016/j.heliyon.2022.e12093
  21. De Cianni R., Varese G. C., Mancuso T., 2023. A further step toward sustainable development: the case of the edible mushroom supply chain. Foods 12(18), 3433. https://doi.org/10.3390/foods12183433
  22. Dey B., Ador M.A.H., Haque M.M.U. i in., 2024. Strategic insights for sustainable growth of mushroom farming industry in Bangladesh. A comprehensive evaluation using SWOT-AHP and TOPSIS frameworks. Heliyon 10(17), e36956. https://doi.org/10.1016/j.heliyon.2024.e36956
  23. Dias E.S., Zied D.C., Pardo-Gimenez A., 2021. Revisiting the casing layer. Casing materials and management in Agaricus mushroom cultivation. Ciênc. Agrotec. 45, e0001R21. https://doi.org/10.1590/1413-70542021450001r21
  24. Dissemond M.H., Franken ChE., Sari M., 2025. Agaricus bisporus grown on sustainable peat casing alternatives. Foods 14(19), 3348. https://doi.org/10.3390/foods14193348
  25. Dutt N., Choi D., 2024. A computer vision system for mushroom detection and maturity estimation using depth images. In: 2024 ASABE Annual International Meeting, 2400774. https://doi.org/10.13031/aim.202400774
  26. European Commission, 2022. Green deal: pioneering proposals to restore Europe’s nature by 2050. https://ec.europa.eu/newsroom/europe_direct/items/751582/ [dostęp: 23.11.2025]
  27. European Mushrooms the hidden gem, 2024. https://mushroombusiness.com/news/the-hidden-gem-on-track/#:~:text=In%202023%2C%20the%20GEPC%20%28European%20Association%20of%20Mushrooms,Germany%2C%20Hungary%2C%20Ireland%2C%20Italy%2C%20The%20Netherlands%2C%20Poland%2C%20Spain [dostęp: 23.11.2025].
  28. Fouguira S., Ammar E., Haji M.E. i in., 2025. Internet of things and predictive artificial intel-ligence for smartcomposting process in the context of circular economy. Eng. Proc. 97(1), 16. https://doi.org/10.3390/engproc2025097016
  29. Gapiński M., Woźniak W., 1999. Pieczarka. Technologia uprawy i przetwarzania. PWRiL, Poznań.
  30. Gernon D., 2024. The very nature of mushroom picking is difficult to automate. FreshPlaza – North America, 11 lipca 2024. https://www.freshplaza.com/north-america/article/9643046/the-very-nature-of-mushroom-picking-is-difficult-to-automate-as-they-grow-sporadically-in-clusters-and-are-very-sensitive/ [dostęp: 23.11.2025].
  31. Goglio P., Ponsioen T., Carrasco J. i in., 2024. An environmental assessment of Agaricus bisporus ((J.E.Lange) Imbach) mushroom production systems across Europe. Eur. J. Agron. 155, 127108. https://doi.org/10.1016/j.eja.2024.127108
  32. Goglio P., Ponsioen T., Carrasco J. i in., 2025. Environmental impact of peat alternatives in growing media for European mushroom production. Sci. Total Env.964, 178624. https://doi.org/10.1016/j.scitotenv.2025.178624
  33. Griensven L.J.L.D. (red.), 1988. The cultivation of mushrooms, tłum. Interlingua T.T.I. Ltd. Darlington Mushroom Laboratories, Rustington. https://archive.org/details/cultivationofmus0000unse [dostęp: 23.11.2025].
  34. Griensven L.J.L.D. van, 1982. Proefstation voor de champignoncultu-ur.https://research.wur.nl/en/publications/proefstation-voor-de-champignoncultuur/ [dostęp: 23.11.2025].
  35. Gruda N.S., Hirschler O., Stuart J., 2024. Peat reduction in horticulture – an overview of Eu-rope. ISHS Acta Hortic. 1391, IX South-Eastern Europe Symposium on Vegetables and Potatoes. https://doi.org/10.17660/ActaHortic.2024.1391.75
  36. Halford G.S., Baker R., McCredden J.E. i in., 2005. How many variables can humans process?. Psychol. Sci. 16(1), 70–76. https://doi.org/10.1111/j.0956-7976.2005.00782.x
  37. He L., Mahnan S., Pecchia J., 2025. Overview of button mushroom harvesting technologies. https://extension.psu.edu/overview-of-button-mushroom-harvesting-technologies/ [dostęp: 23.11.2025]
  38. Hirschler O., Osterburg B., 2025. Achieving peat-free hobby gardening for climate mitigation in Germany. Insights into prices of growing media constituents, potting soils and policy options. Res. Conserv. Recycl. 220, 108330. https://doi.org/10.1016/j.resconrec.2025.108330
  39. Hirschler O., Osterburg B., Weimar H. i in., 2022. Peat replacement in horticultural growing media. Availability of biobased alternative materials. Thünen Working Pap. 190. https://doi.org/10.3220/WP1648727744000
  40. http://grzyby.grzybnia.pl/component/content/article/7-spis-tresci/3286-rekordowy-plon-416kgm2 [dostęp: 23.11.2025].
  41. https://hajduk.pl/podloze-do-pieczarek/ [dostęp: 23.11.2025].
  42. https://umdis.org/labour-accounts-for-44-of-the-total-production-cost/ [dostęp: 23.11.2025]
  43. https://umdis.org/what-are-the-main-challenges-of-the-cultivated-mushroom-industry-in-2024/ [dostęp: 23.11.2025].
  44. https://www.farmer.pl/fakty/polska/pie-polska-najwiekszym-w-europie-producentem-pieczarek,92897.html [dostęp: 23.11.2025].
  45. https://www.opportimes.com/en/poland-consolidates-its-position-as-the-largest-exporter-of-mushrooms-in-the-world/ [dostęp: 23.11.2025].
  46. https://www.p-m-n.pl/technologie/ [dostęp: 23.11.2025].
  47. https://www.sadyogrody.pl/warzywa/102/pieczarkarnia_na_skraju_bankructwa_lokalna_firma_apeluje_o_wsparcie,49148.html [dostęp: 23.11.2025].
  48. Huang M., He L., Choi D. i in., 2021. Picking dynamic analysis for robotic harvesting of Agaricus bisporus mushrooms. Comput. Electron. Agric. 185, 106145. https://doi.org/10.1016/j.compag.2021.106145
  49. Humfeld H., 1948. The production of mushroom mycelium (Agaricus campestris) in submerged culture. Science 107(2780), 373. https://doi.org/10.1126/science.107.2780.373
  50. Jacob M.S., Xu A., Qian K. i in., 2025. Artificial intelligence in edible mushroom cultivation. J. Fungi 11(11), 758. https://doi.org/10.3390/jof11110758
  51. Kavaliauskas Ž., Šajev I., Gecevičius G. i in., 2022. Intelligent control of mushroom growing conditions using an electronic system for monitoring and maintaining environmental pa-rameters. Appl. Sci. 12(24), 13040. https://doi.org/10.3390/app122413040
  52. Kim K., Choi B., Lee I. i in., 2011. Bioproduction of mushroom mycelium of Agaricus bisporus by commercial submerged fermentation for the production of meat analogue. J. Sci. Food Agric. 91(9), 1561–1568. https://doi.org/10.1002/jsfa.4348
  53. Koirala B., Zakeri A., Kang J. i in., 2024. Robotic button mushroom harvesting systems. A review of design, mechanism, and future directions. Appl. Sci. 14(20), 9229. https://doi.org/10.3390/app14209229
  54. Kristensen H.L., Rosenqvist E., Edlund A., 2012. Increase of vitamin D2 by UV-B exposure during the growth and postharvest handling of white button mushrooms (Agaricus bispo-rus). Food Nutr. Res. 56, 7114. https://doi.org/10.3402/fnr.v56i0.7114
  55. Leithäuser H., Kirschner R., Tsai M.J., 2025. Exploring mushroom cultivation under the 13 principles of the agroecological transition. A review. J. Sust. For. 44(7), 679–712. https://doi.org/10.1080/10549811.2025.2532823
  56. Liang X., Wang Y., Zhang Y. i in., 2021. Viral abundance, community structure and correlation with bacterial community in soils of different cover plants. Appl. Soil Ecol. 168, 104138. https://doi.org/10.1016/j.apsoil.2021.104138
  57. Ma X., Yan S., Wang M., 2025. Spent mushroom substrate. A review on present and future of green applications. J. Environ. Manag. 373, 123970. https://doi.org/10.1016/j.jenvman.2024.123970
  58. Mami, Y., Peyvast G., Ghasemnezhad M. i in., 2013. Supplementation at casing to improve yield and quality of button mushroom (Agaricus bisporus). Agric. Sci. 4(1), 27–33. http://dx.doi.org/10.4236/as.2013.41005
  59. Maseko K.H., Regnier T., Bartels P. i in., 2025. Mushroom mycelia as sustainable alternative proteins for the production of hybrid cell-cultured meat. A review. J. Food Sci. 90(2), e70060 https://doi.org/10.1111/1750-3841.70060
  60. Mavridis P., Mavrikis N., Mastrogeorgiou A. i in., 2023. Low-cost, accurate robotic harvesting system for existing mushroom farms. 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Seattle, 144–149. https://doi.org/10.1109/AIM46323.2023.10196219
  61. Mushroom cultivation in 2025: situation, challenges and prospects in Italy and Europe, 2025. FreshPlaza Europe, https://www.freshplaza.com/europe/article/9694920/mushroom-cultivation-in-2025-situation-challenges-and-prospects-in-italy-and-europe/ [dostęp: 23.11.2025].
  62. Navarro M.J., Carrasco J., Gea F.J., 2021. The role of water content in the casing layer for mushroom crop production and the occurrence of fungal diseases. Agronomy 11(10), 2063. https://doi.org/10.3390/agronomy11102063
  63. Noble R., Gaze R.H., 1994. Controlled environment composting for mushroom cultivation. Substrates based on wheat and barley straw and deep-litter poultry manure. J. Agric. Sci. 123(1), 71–79. https://doi.org/10.1017/S0021859600067794
  64. Noble R., Gaze R.H., 2009. Controlled environment composting for mushroom cultivation: substrates based on wheat and barley straw and deep-litter poultry manure. Cambridge University Press, https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/abs/controlled-environment-composting-for-mushroom-cultivation-substrates-based-on-wheat-and-barley-straw-and-deep-litter-poultry-manure/543E6FD83BF5DB426F4AD895A38D2108?utm_source=chatgpt.com [dostęp: 23.11.2025].
  65. Noble R., Grogan H., Corbett E. i in., 2023. The future of casing. Review of casing materials and availability of peat for mushroom cultivation, https://isms.biz/common/Uploaded%20files/AM-GA%20Future%20of%20Casing%20Report_FINAL_V1.2.pdf [dostęp: 23.11.2025].
  66. Noble R., Hobbs P.J., Mead A., 2002. Influence of straw types and nitrogen sources on mush-room composting emissions and compost productivity. J. Ind. Microbiol. Biotechnol. 29(3), 99–110. https://doi.org/10.1038/sj.jim.7000292
  67. Noble, R., Thai M., Kertesz M.A., 2024. Nitrogen balance and supply in Australasian mushroom composts. Appl. Microbiol. Biotechnol. 19(108), 151. https://doi.org/10.1007/s00253-023-12933-2
  68. O’Connor S., 2024. 4AG Robotics claim to have production-ready harvesting robot. UMDIS Mushroom Information Agency – News, Technology. https://umdis.org/4ag-robotics-claim-to-have-production-ready-harvesting-robot/ [dostęp: 23.11.2025]
  69. Okuda Y., 2022. Sustainability perspectives for future continuity of mushroom production. The bright and dark sides. Front. Sust. Food Sys. 6, 1026508. https://doi.org/10.3389/fsufs.2022.1026508
  70. Optimising nitrogen transformations in mushroom production, 2024. Final Report. MU17004. Hort Innovation Australia, Sydney. https://www.horticulture.com.au/globalassets/laserfiche/assets/project-reports/mu17004/mu17004-final-report.pdf [dostęp: 23.11.2025].
  71. Pardo A., de Juan A.J., Pardo J., 2004. Assessment of different casing materials for use as peat alternatives in mushroom cultivation. Evaluation of quantitative and qualitative produc-tion parameters. Spanish J. Agric.Res. 2(2), 267–272. https://doi.org/10.5424/sjar/2004022-80
  72. Pardo-Giménez A., Catalán L. Carrasco J. i in., 2015. Effect of supplementing crop substrate with defatted pistachio meal on Agaricus bisporus and Pleurotus ostreatus production. J. Sci. Food Agric. 96(11), 3838–3845. https://doi.org/10.1002/jsfa.7579
  73. Perera K., Packeeran R., Suriyabandara Y. i in. 2024. Button mushroom farming using ma-chine learning. Proc. Comp. Sci. 235, 1742–1751. https://doi.org/10.1016/j.procs.2024.04.165
  74. Pérez-Bassart Z., Reyes A., Martínez-Abad A. i in., 2023. Feasibility of Agaricus bisporus waste biomass to develop bio-based and biodegradable films. Food Hydrocolloids 142, 108861. https://doi.org/10.1016/j.foodhyd.2023.108861
  75. Pudełko K., 2015. Studia nad produkcją kompostu i jego wpływ na plon Agaricus bisporus (Lange) Imbach. Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu, Poznań.
  76. Rahman H., Omar F., Bin Abdul Hai T. i in., 2022. IoT enabled mushroom farm automation with Machine Learning to classify toxic mushrooms in Bangladesh. J. Agric. Food Res. 7, 100267. https://doi.org/10.1016/j.jafr.2021.100267
  77. Randle P.E., Flegg P.B., 1985. The effect of duration of composting on compost density and the yield of mushrooms. Sci. Hortic. 27(1–2), 21–31. https://doi.org/10.1016/0304-4238(85)90051-2
  78. Rastogi M., Nandal M., Khosla B., 2020. Microbes as vital additives for solid waste compost-ing. Heliyon 6(2), e03343. https://doi.org/10.1016/j.heliyon.2020.e03343
  79. Rathore H., Prasad S., Kapri M. i in., 2019. Medicinal importance of mushroom mycelium. Mechanisms and applications. J. Functional Foods 56, 182–193. https://doi.org/10.1016/j.jff.2019.03.016
  80. Royse D.J., 2010. Effects of fragmentation, supplementation and the addition of water during phase II on mushroom yield. Biores. Technol. 101(1), 188–192. https://doi.org/10.1016/j.biortech.2009.07.073
  81. Royse D.J., Sánchez J.E., Beelman R. i in., 2008. Re-supplementing and re-casing mushroom (Agaricus bisporus) compost for a second crop. World J. Microbiol. Biotechnol. 24(3), 319–325. https://doi.org/10.1007/s11274-007-9473-9
  82. Sakson N., 2004. Pieczarka. Uprawa intensywna. PWRiL, Poznań.
  83. Sakson N., 2007. Produkcja podłoża do uprawy pieczarek. PWRiL, Poznań.
  84. Sakson N., 2008. Produkcja pieczarki na podłożu fazy III. PWRiL, Poznań.
  85. Sakson N., 2009. Zielone pleśnie w uprawie pieczarki. PWRiL, Poznań.
  86. Sakson N., 2012. Nowa ochrona pieczarki. PWRiL, Poznań.
  87. Sakson N., 2013. Pieczarka. Uprawa intensywna, wyd. 2 popr. i uzup.. PWRiL, Poznań
  88. Sangeeta, Sharma D., Ramniwas S. i in., 2024. Revolutionizing mushroom processing: Innova-tive techniques and technologies. Food Chem. 10(23), 101774. https://doi.org/10.1016/j.fochx.2024.101774
  89. Shanmugaraj C., Saranraj K., Biswas M.K., 2024. Effect of organic supplements with casing mixture on the biological efficacy of Agaricus bisporus under the agro-ecological condi-tion of west Bengal. J. Mycopathol. Res. 62(3), 647–652. https://doi.org/10.57023/JMycR.62.3.2024.647
  90. Shin H.J., Ro, H.S., Kawauchi M.Y. i in., 2025. Review on mushroom mycelium-based prod-ucts and their production process: from upstream to downstream. Biores. Bioproc. 12(3), 1–23. https://doi.org/10.1186/s40643-024-00836-7
  91. Singh M., Kamal S., Sharma V.P., 2020. Status and trends in world mushroom production–III: World production of different mushroom species in the 21st century. Mushroom Res. 29(2), 75–111. https://doi.org/10.36036/MR.29.2.2020.113703
  92. Siwulski M., Sas-Golak I. (red.), 2014. Pieczarka Agaricus. Gatunki, uprawa, właściwości proz-drowotne. Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu, Poznań.
  93. Siwulski M., Sobieralski K., 2004. Uprawa grzybów jadalnych i leczniczych w warunkach naturalnych. Kurpisz, Poznań.
  94. Sommer K., Hillinger M., Vetter W., 2024. Previtamin D2, vitamin D2, and vitamin D4 amounts in different mushroom species irradiated with ultraviolet (UV) light and occur-rence of structurally related photoproducts. Eur. J. Lipid Sci. Technol. 126(10), 2300181. https://doi.org/10.1002/ejlt.202300181
  95. Stefko O., Ciesielska B., 2014. Szanse i zagrożenia dla rozwoju produkcji pieczarek w Polsce. Rocz. Nauk. Ekon. Rol. Rozw. Obsz. Wiej. 101(3), 180–187. https://doi.org/10.22630/RNR.2014.101.3.45
  96. Straatsma G., Gerrits J.P.G., Thissen J. i in., 2000. Adjustment of the composting process for mushroom cultivation based on initial substrate composition. Biores. Technol. 72(1), 67–74. https://doi.org/10.1016/S0960-8524(99)00088-7
  97. Szudyga K., 2005. Uprawa pieczarki. Hortpress, Warszawa.
  98. Szumigaj-Tarnowska J., 2023. Metodyka ekologicznej uprawy pieczarki. Instytut Ogrodnictwa – PIB, Skierniewice. https://www.inhort.pl/wp-content/uploads/2024/01/7.2_metodyka_PIECZARKA.pdf [dostęp: 23.11.2025].
  99. Temel F.A., Akyol E., Goktas M., 2023. Artificial intelligence and machine learning approach-es in composting process. A review. Biores. Technol. 370, 128539. https://doi.org/10.1016/j.biortech.2022.128539
  100. Thai M., Safianowicz K., Bell T.L. i in., 2022. Dynamics of microbial community and enzyme activities during preparation of Agaricus bisporus compost substrate. Front. Microbiol. 2(1), art. 985351. https://doi.org/10.3389/fmicb.2022.985351
  101. Vedder P., 1983. Our formula to be competitive in the mushroom business. Mushroom J. 121, 32–37. https://isms.biz/common/Uploaded%20files/ISMS/Mushroom%20Journal%201990-1983/1983-1.pdf [dostęp: 23.11.2025]
  102. Vieira F.R., Pecchia J., 2018. An exploration into the bacterial community under different pasteurization conditions during substrate preparation (composting-phase II) for Agaricus bisporus cultivation. Microbial Ecol.75, 318–330. https://doi.org/10.1007/s00248-017-1026-7
  103. Vieira W.G., da Silva Alves L., de Moura J.B.i in., 2025. Evaluation of reuse of spent mush-room substrate for new Pleurotus ostreatus crop cycle. AgriEngineering 7(10), 342. https://doi.org/10.3390/agriengineering7100342
  104. Vos A.M., Heijboer A., Boschker H.T.S. i in., 2017. Microbial biomass in compost during colonization by Agaricus bisporus. AMB Exp. 7, 12. https://doi.org/10.1186/s13568-016-0304-y
  105. Walsh É., Borrion A., Walsh L., 2025. Environmental assessment of compost for Agaricus bisporus. Cleaner Circular Bioecon. 12, 100183. https://doi.org/10.1016/j.clcb.2025.100183
  106. Wattanavichean N., Phanthuwongpakdee J., Koedrith P. i in. 2025. Mycelium-based break-throughs. Exploring commercialization, research, and next-gen possibilities. Circ. Econ. Sust. 5, 3211–3253. https://doi.org/10.1007/s43615-025-00539-x
  107. Whitehead A., 2023. Defra’s complete ban on peat in horticulture could take another seven years. Garden organic, https://www.gardenorganic.org.uk/news/defras-complete-ban-on-peat-in-horticulture-could-take-another-seven-years#:~:text=Defra%20has%20confirmed%20it%20will%20be%20banning%20peat,latest%20announcement%20on%20the%20peat%20ban%20in%20England [dostęp: 23.11.2025].
  108. Zgłoszenie patentowe P.438706. Sposób wytwarzania bioselektywnej okrywy do uprawy grzy-bów jadalnych. Hreczuch Wiesław MEXEO, Kędzierzyn-Koźle.
  109. Zgłoszenie patentowe P.450644. Sposób kalibracji metod analitycznych oznaczania ditlenku chloru w fazie gazowej. Chruściel Arkadiusz, MEXEO, Kędzierzyn-Koźle.
  110. Zgłoszenie patentowe P.452691. Okrywa humusowa, sposób wytwarzania okrywy humusowej i zastosowanie okrywy humusowej do uprawy, Afirma, Wojnowo.
  111. ZHAW – Zürcher Hochschule für Angewandte Wissenschaften, 2025. PEATLESS – Develop-ing peat-free substrates for horticulture and mushroom production. EU Project Database, https://peatless.eu/ [dostęp: 23.11.2025].
  112. Zmarlicki K., Brzozowski P., 2018. Perspektywy, szanse i zagrożenia dla produkcji pieczarek. Instytut Ogrodnictwa – InHort, Skierniewice. https://www.inhort.pl/files/program_wieloletni/PW_2015_2020_IO/spr_2018/Zmarlicki_2018_RAPORT_pieczarki_zad_5.1.pdf [dostęp: 23.11.2025].

Downloads

Download data is not yet available.

Podobne artykuły

1 2 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.