Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 73 Nr 4 (2018)

Artykuły

Poszukiwanie źródeł odporności na choroby w odmianach dawnych i miejscowych oraz dzikich gatunkach pokrewnych zbóż. Praca przeglądowa

DOI: https://doi.org/10.24326/asx.2018.4.5
Przesłane: 10 stycznia 2019
Opublikowane: 19-12-2018

Abstrakt

Nowoczesna produkcja roślinna ukierunkowana jest na uprawę odmian łączących w sobie częściową lub trwałą w czasie odporność na najczęściej występujące choroby zbóż z tolerancją na abiotyczne czynniki stresowe. Obecnie obserwowany jest wzrost zainteresowania dawnymi i lokalnymi odmianami, zwłaszcza w ekologicznych uprawach zbóż. Duże zdolności adaptacyjne do środowisk marginalnych i odporność na patogeny tych genotypów, a także łatwy dostęp hodowców do zasobów genowych mogą przyczynić się do zwiększenia bezpieczeństwa żywnościowego. Dzikie gatunki pokrewne zbóż oraz odmiany lokalne stanowią niezwykle cenny materiał badawczy i aplikacyjny w pracach naukowych oraz hodowlanych. Celem niniejszej publikacji jest przybliżenie zakresu i możliwości wykorzystywania w programach hodowlanych odmian dawnych, miejscowych i dzikich gatunków pokrewnych zbóż jako potencjalnych dawców stabilnej i trwałej odporności na stresy biotyczne.

Bibliografia

  1. Ambrozková M., Dedryver F., Dumalasová V., Hanzalová A., Bartoš P., 2002. Determination on the custer on wheat rust resistance genes Yr17, Lr37 and Sr38 by a molecular marker. Plant Prot. Sci. 38(2), 41–45.
  2. An D.G., Li J.M., Zhu Y., Li L.H., Li H., 2006. Introgression of resistance to powdery mildew conferred by chromosome 2R by crossing wheat nullisomic 2D with rye. J. Integr. Plant Biol. 48(7), 838–47, https://doi.org/10.1111/j.1744-7909.2006.00275.x.
  3. Anikster Y., Manisterski J., Long D.L., Leonard K.J., 2005. Leaf rust and stem rust resistance in Triticum dicoccoides populations in Israel. Plant Dis. 89, 55–62, https://doi.org/10.1094/PD-
  4. -89-0055
  5. Arteaga M.C., Moreno-Letelier A., Mastretta-Yanes A., Vazquez-Lobo A., Brena-Ochoa A., Moreno-Estrada A., Equiarte L.E., Pinero D., 2016. Genomic variation in recently collected maize landraces from Mexico. Genomics Data 7, 38–45, https://doi.org/10.1016/ j.gdata.2015.11.002.
  6. Bai D., Scoles G.J., Knott D.R., 1995. Rust resistance in Triticum cylindricum Ces. (4x, CCDD) and its transfer into durum and hexaploid wheats. Genome 38(1), 8–16.
  7. Bauer E., Schmutzer T., Barilar I., Bauer E., Schmutzer T., Barilar I., Mascher M., Gundlach H., Martis M.M., Twardziok S.O., Hackauf B., Gordillo A., Wilde P., Schmidt M., Korzun V., Mayer K.F.X., Schmid K., Schön C.C., Scholz U., 2017. Towards a whole-genome sequence for rye (Secale cereal L.). Plant J. 89, 853–869, https://doi.org/10.1111/tpj.13436.
  8. Bellucci E., Bitocchi E., Rau D., Nanni L., Ferradini N., Giardini A., Rodriguez M., Attene G., Papa R., 2013. Population structure of barley landrace populations and gene- flow with modern varieties. Plos One 8(12), 1–11, https://doi.org/10.1371/journal.pone.0083891.
  9. Broda Z., Kurasiak-Popowska D., Kowalska A., Ćwiklińska A., 2008. Analiza podobieństwa genetycznego wybranych gatunków w rodzaju Secale [Analysis of genetic similarity of selected species in Secale genus]. Biul. IHAR 247, 65–71.
  10. Buckler E.S., Thornsberry J.M., Kresovich S., 2001. Molecular diversity, structure and domestica-tion of grasses. Genet. Res. 77, 213–218.
  11. Burger J.C., Lee S, Ellstrand N.C., 2006. Origin and genetic structure of feral rye in the western United States. Mol. Ecol. 15(9), 2527–2539, https://doi.org/10.1111/j.1365-294X.2006. 02938.x.
  12. Cairns J. E., Hellin J., Sonder K., Araus J. L., MacRobert J. F., Thierfelder Ch., Prasanna B. M., 2013. Adapting maize production to climate change in sub-Saharan Africa. Food Sec. 5,
  13. –360, https://doi.org/10.1007/s12571-013-0256-x.
  14. Chełkowski J., Golka L., Stępień Ł., 2003. Appication of STS markers for leaf rust resistance genes in near-isogenic lines of spring wheat cv. Thatcher. J. Appl. Genet. 44(3), 323–338.
  15. Chen P.D., Qi L.L., Zhou B., Zhang S.Z., Liu D.J., 1995. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor. Appl. Genet., 91, 1125–1128, https://doi.org/10.1007/BF00223930.
  16. Chen X.M., Luo Y.H., Xia X.C., Xia L.Q., Chen X., Ren Z.L., He A.H., Jia J.Z., 2005. Chromo-somal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed. 124, 225–228, https://doi.org/10.1111/j.1439-0523.2005.01094.x.
  17. Crespo-Herrera L.A., Garkava-Gustavsson L., Åhman I., 2017. A Systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas 154, 14, https://doi.org /10.1186%2Fs41065-017-0033-5.
  18. Czembor H.J., 2000. Resistance to powdery mildew in barley (Hordeum vulgare L.) landraces from Egypt. Plant Genet. Resour. Newsl. 123, 52–60.
  19. Czembor H.J., 2001. Sources of resistance to powdery mildew (Blumeria graminis f.sp. hordei) in Moroccan barley landraces. Can. J. Plant Pathol. 23, 260–269, https://doi.org/10.1080/ 07060660109506939.
  20. Ferwerda F.P., 1956. Recurrent selection as a breeding procedure for ray and other cross-fertilized plants. Euphytica 5, 175–184.
  21. Feuillet C., Langridge P., Waugh R., 2007. Cereal breeding takes a walk on the wild side. Trends Genet. 24, 24–32, https://doi.org/10.1016/j.tig.2007.11.001.
  22. Fiedorow Z., Gołębniak B., Weber Z., 2006. Ogólne wiadomości w fitopatologii [General news in phytopathology]. Wyd. AR, Poznań.
  23. Frederiksen S., Petersen G., 2008. Morphometrical analyses of secale (Triticeae, Poaceae). Nord. J. Bot. 17(2), 185–198, https://doi.org/10.1111/j.1756-1051.1997.tb00309.x.
  24. Friebe B., Jiang J., Raupp W., Mcintosh R., Gill B.S., 1996. Characterization of wheat-alien trans-locations conferring resistance to diseases and pests. Euphytica 91(1), 59–87.
  25. Fu D., Uauy C., Distelfeld A., Blechl A., Epstein L., Chen X., Sela H., Fahima T., Dubcovsky J., 2009. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323, 1357–1360, https://doi.org/10.1126/science.1166289.
  26. Gacek E., Głazek M., Matyjaszczyk E., Pruszyński G., Pruszyński S., Stobiecki S., 2016. Metody ochrony w integrowanej ochronie roślin [Methods of protection in integrated plant protection]. Centrum Doradztwa Rolniczego w Brwinowie, Oddział w Poznaniu, s. 81, https://www.cdr.gov.pl/images/wydawnictwa/2016/2016-METODY-OCHRONY-W-INTE GROWANEJ-OCHRONIE-ROSLIN.pdf.
  27. Gailīte A., Gaile A., Gaile I., Voronova A., Veinberga I., Kokare A., Rungis D., 2013. Genotypic assessment of the Latvian rye (Secale cereale L.) collection. Proc. Latvian Acad. Sci. 3(684), 264–267.
  28. Geiger H.H., Schuhmacher A.E., Billenkamp N., 1988. Frequencies of vertical resistances and virulences in the rye-powdery mildew pathosystem. Plant Breed. 100(2), 97–103.
  29. Gepts P., 2000. A phylogenetic and genomic analysis of crop germplasm: A necessary condition for its rational conservation and utilization. In: Proc. Stadler Genetics Symposium, June 8–10, 1998, New York, 163–181.
  30. Gepts P., Papa R., 2003. Possible effects of (trans)gene flow from crops on the genetic diversity from landraces and wild relatives. Environ. Biosafety Res. 2, 89–103.
  31. Górny A.G., 2004. Zarys genetyki zbóż. Tom 1. Jęczmień, pszenica i żyto [Barley, wheat and rye]. Wyd. Instytut Genetyki Roślin PAN, Poznań, 181–327.
  32. Gracz J., Tyczewska A., Twardowski T., 2015. Perspektywy i wyzwania hodowli roślin w erze postgenomowej [Prospects and challenges of plant breeding in the postgenomic era]. Nauka 2, 109–126.
  33. GUS, 2018. Rocznik Statystyczny 2018 [Statistical Yearbook 2018]. Główny Urząd Statystyczny, Warszawa.
  34. Hajjar R., Hodgkin T., 2007. The use of wild relatives in crop improvement: a survey of develop-ments over the last 20 years. Euphytica 156, 1–13, https://doi.org/10.1007/s10681-007-9363-0.
  35. Hammer K., 1998. Genepools – structure, availability and elaboration for breeding (German, Engl. Summary). Schriften Gen. Res. 8, 4–14.
  36. Harlan J.R., de Wet J.M.J., 1971. Towards a rational classification of cultivated plants. Taxon 20, 509–517, https://doi.org/10.2307/1218252.
  37. Haussmann B.I.G., Parzies H.K., Presterl T., Miedaner T., 2004. Plant genetic resources in crop improvement. Plant Genet. Resour., C, 2(1), 3–21.
  38. Hellin J., Shiferaw B., Cairns J. E., Reynolds M., Ortiz-Monasterio I., Banziger M., Sonder K., La Rovere R., 2012. Climate change and food security in the developing world: Potential of maize and wheat research to expand options for adaptation and mitigation. J. Develop. Agric. Econ.. 4(12), 311–321, https://doi.org/10.5897/JDAE11.112
  39. Heun M., Friebe B., 1990. Introgression of powdery mildew resistance from rye into wheat. Phy-topathology 80(3), 242–245.
  40. http://plony.eu/choroby-zboz/ [dostęp 09.2018].
  41. http://www.fao.org/faostat/en/ [dostęp 09.2018].
  42. http://www.farmer.pl/produkcja-roslinna/zboza/rdza-brunatna-szaleje-w-zycie,78829.html [dostęp 09.2018].
  43. Hughes A.R., Inouye B.D., Johnson M.T.J., Underwood N., Vellend M., 2008. Ecological conse-quences of genetic diversity. Ecol. Lett. 11, 609–623, https://doi.org/10.1111/j.1461-0248.2008.01179.x.
  44. Hurni S., Scheuermann D., Krattinger S. G., Kessel B., Wicker T., Herren G., Fitze M. N., Breen J., Presteri T., Ouzunova M., Keller B., 2015. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc Natl Acad Sci USA 112(28), 8780–8785, https://doi.org/10.1073/pnas.1502522112.
  45. Inostroza L., Pozo A., Matus I., Castillo D., Hayes P., Machado S., Corey A., 2009. Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Mol. Breed. 23, 365–376, https://doi.org/ 10.1007/ s11032-008-9239-6.
  46. Jańczak C., Pawlak A., 2006. Występowanie i szkodliwość mączniaka prawdziwego (Blumeria graminis) w pszenicy ozimej w latach 2003–2005 [Occurrence and harmfulness of powdery mildew (Blumeria graminis) in winter wheat in 2003-2005]. Post. Ochr. Rośl. 46(2), 582–542.
  47. Jenabi T., Saeid H.,Rahiminejad M.R., 2011. Biodiversity of Secale strictum in Iran measured using microsatellites. Genet. Resur. Crop. Ev. 58(4), 497–505, https://doi.org/10.1007/ s10722-010-9593-1.
  48. Jiang J., Gill B.S., 1994. Different species-specific chromosome translocations in Triticum timopheevii and T. turgidum diphyletic origin of polyploid wheats. Chromosome Res. 2, 59–64.
  49. Jones H., Lister D.L., Bower M.A., Leigh F.J., Smith L.M., Jones M.K., 2008. Approaches and constraints of using existing landrace material to understand agricultural spread in prehistory. Plant Genet. Resour-C. 6(2), 98–112, https://doi.org/10.1017/S1479262108993138.
  50. Kai H., Takata K., Tsukazaki M., Furusho M., Bana T., 2012. Molecular mapping of Rym17, a dominant and rym18 a recessive barley yellow mosaic virus (BaYMV) resistance genes de-rived from Hordeum vulgare L. Theor. Appl. Genet. 124, 577–583, https://doi.org/10.1007/ s00122-011-1730-5.
  51. Kobylyanskii V.D., Solodukhina O.V., 1996. Genetic bases and breeding utilization of heteroge-neous resistance of rye to brown rust. International symposium on rye breeding and genetics. EUCARPIA. Vortrage Fuer Pflanzenzuchtung, Stuttgart, 155–163.
  52. Kochman J., Węgorek W., 1997. Ochrona roślin. Choroby infekcyjne [Plant protection. Infectious diseases]. Wyd. 5, Plantpress, Kraków, . 445–447.
  53. Kryczyński S., Weber Z., 2011. Fitopatologia. T. 2. Choroby roślin uprawnych [Diseases of culti-vated plants]. PWRiL, Poznań, 350-352, ISBN 978-83-09-01077-7.
  54. Łukaszewski A.J., Porter D.R., Baker C.A., Rybka K., 2001. Attempts to transfer russian wheat aphid resistance from a rye chromosome in russian triticales to wheat. Crop Sci. 41, 1743–1749, https://doi.org/10.2135/cropsci2001.1743.
  55. Marais G.F., Horn M., Torr F., 2018. Intergeneric transfer (rye to wheat) of a gene(s) for russian wheat aphid resistance. Plant Breed. 113(4), 265–71, https://doi.org/10.1111/j.1439-0523.1994.tb00735.x.
  56. Matos M., Pinto-Carnide O., Benit C., 2001. Phylogenetic relationships among portuguese rye based on isozyme, RAPD and ISSR markers. Hereditas 134, 229–36, https://doi.org/ 10.1111/j.1601-5223.2001.00229.x.
  57. McIntosh R.A., Wellings C.R., Park R.F., 1995. Wheat rusts: An atlas of resistance genes. CSIRO Publications, East Melbourne.
  58. Mesterhazy A., Lemmens M., Reid L.M., 2012. Breeding for resistance to ear rots caused by Fusarium spp. in maize – a review. Plant Breed. 131, 1–19, https://doi.org/10.1111/j.1439-0523.2011.01936.x.
  59. Metodyka integrowanej ochrony kukurydzy dla producentów, 2013. [Methodology of Integrated Corn Protection for Producers]. IOR – PIB, Poznań.
  60. Mirdita V., 2006. Genetische Variation for Resistenz gegen Mutterkorn (Claviceps purpurea [Fr.] Tul.) bei selbstinkompatiblen und selbstfertilen Roggenpopulationen. Rozprawa doktorska. Stuttgart, Univ. Hohenheim, http://opus.uni-hohenheim.de/volltexte/2006/148/.
  61. Morrison L.A., Riera-Lizarazu O., Crémieux L., Mallory-Smith C.A., 2002. Jointed goatgrass (Aegilops cylindrica Host) × wheat (Triticum aestivum L.) hybrids. Crop Sci. 42, 1863–1872.
  62. Mujeeb-Kazi A., 2006. Utilization of genetic resources for bread wheat improvement. Genet. Resour. Chromosome Eng. Crop Improv. 2, 61–97.
  63. Niekerk van B.D., Pretorius Z.A., Boshoff W.H.P., 2001. Occurrence and pathogenicity of Puccinia hordei on barley in South Africa. Plant Dis. 85, 713–717, https://doi.org/10.1094/ PDIS.2001.85.7.713.
  64. Niks R.E., Habekuß A., Bekele B., Ordon F., 2004. A novel major gene on chromosome 6H for resistance to barley against the barley yellow dwarf virus. Theor. Appl. Genet. 109, 1536–1543, https://doi.org/10.1007/s00122-004-1777-7.
  65. Ogbonnaya F.C., Abdalla O., Mujeeb-Kazi A., Kazi A.G., Gosnian N., Lagudah E.S., 2013. Syn-thetic hexaploids: harnessing species of the primary gene pool for wheat improvement. Plant Breed. Rev. 37, 35–122.
  66. Oliver R.E., Stack R.W., Miller J.D., Cai X., 2007. Reaction of wild emmer wheat accessions to Fusarium head blight. Crop Sci. 47, 893–899, https://doi.org/10.2135/cropsci2006.08.0531.
  67. Perugini L.D., Murphy J.P., Marshall D., Brown-Guedira G., 2008. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timophevii. Theor. Appl. Genet. 116(3), 417–425, https://doi.org/10.1007/s00122-007-0679-x.
  68. Pickering R., 2000. Do the wild relatives of cultivated barley have a place in barley improvement? In: S. Logue (ed), Barley genetics. Proceedings of the 8th international barley genetics symposium, vol. 1. Department of Plant Science, Waite Campus, Adelaide University, s. 223–230.
  69. Pickering R., Johnston P.A., 2005. Recent progress in barley improvement using wild species of Hordeum. Cytogenet. Genome. Res. 109, 344–349.
  70. Pickering R.A., Hill A.M., Michel M., Timmerman-Vaughan G.M., 1995. The transfer of a pow-dery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromo-some 2 (2I). Theor. Appl. Genet. 91, 1288–1292, https://doi.org/10.1159/000082418.
  71. Pickering R.A., Ruge-Wehling B., Johnston P.A., Schweizer G., Ackermann P., Wehling P., 2006. The transfer of a gene conferring resistance to scald (Rhynchosporium secalis) from Hordeum bulbosum into H. vulgare chromosome 4HS. Plant Breed. 125(6), 576–579, https://doi.org/10.1111/j.1439-0523.2006.01253.x.
  72. Pickering R.A., Steffenson B.J., Hill A.M., Borovka I., 1998. Association of leaf rust and powdery mildew resistance in a recombinant derived from a Hordeum vulgare × Hordeum bulbosum hybrid. Plant Breed. 117, 83–84.
  73. Pietrusińska A., Czembor J.H., 2015. Piramidyzacja genów – powszechne narzędzie używane w programach hodowlanych [Pyramidization of genes – a common tool used in breeding pro-grams]. Biul. IHAR 278, 3–16.
  74. Pietrusińska A., Czembor J.H., Czembor P.C., 2011. Pyramiding of two resistance genes for leaf rust and powdery mildew resistance in common wheat. Cereal Res. Comm. 39(4), 577–588, https://doi.org/10.14199/ppp-2017-006.
  75. Prończuk M., Bojanowski J., Warzecha R., Laudański Z., 2007. Badania nad odpornością kukury-dzy na zgorzel podstawy łodyg. Cz. I. Ocena podatności odmian mieszańcowych w warunkach infekcji naturalnej [Research on the resistance of maize to stalk base scales. Part I. Evaluation of susceptibility of hybrid cultivars in conditions of natural infection]. Biul. IHAR 245, 155–169.
  76. Qi L., Friebe B., Zhang P., Gill B.S., 2007. Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res. 15, 3–19, https://doi.org/10.1007/s10577-006-1108-8.
  77. Qureshi S. H., Qayyum A., Fiers W., 2015. Sources of genetic resistance in maize to Fusarium stalk rot and their variations in molecular level. Turk. J. Agric. Forest. 39, 503–513, https://doi.org/10.3906/tar-1409-76.
  78. Rabinovich S.V., 1998. Importance of wheat-rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica 100(1), 323–40.
  79. Rao V.R., Hodgkin T., 2002. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tiss. Org. 68, 1–19, http://doi.org/10.1023/A%3A1013359015812.
  80. Ruge B., Linz A., Proeseler G., Pickering G., Greif P., Wehling P., 2003. Mapping of Rym14Hb, a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley. Theor. Appl. Genet. 107, 965–971, https://doi.org/10.1007/s00122-003-1339-4.
  81. Ruge-Wehling B., Linz A., Habekuss A., Wehling P., 2006. Mapping of Rym16(Hb), the second soil-borne virus-resistance gene introgressed from Hordeum bulbosum. Theor. Appl. Genet. 113, 867–873, https://doi.org/10.1007/s00122-006-0345-8.
  82. Rzepka D., 1993. Badania nad mieszańcami S. cereale × S. vavilovii Gross. w aspekcie ich przy-datności w hodowli odmian żyta odpornych na porastanie. Cz. I. Ocena odporności na po-rastanie mieszańców międzygatunkowych żyta [Studies on hybrids of S. cereale × S. vavilovii Gross. in terms of their suitability in growing the rye cultivars resistant to fouling. Part I. Evaluation of resistance to crossbreeding of interspecific rye hybrids]. Hod. Rośl. Aklim. 37(5/6), 69–79.
  83. Rzepka-Plevneš D., Tomczak P., Pławska M., 1995. Możliwość wykorzystania mieszańców mię-dzygatunkowych żyta w hodowli odmian plennych i odpornych na mączniaka prawdziwego (Erysiphe graminis D.C f.sp. secalis marchal) [Possibility to use the rye inter-species hybrids in breeding of fertile cultivars resistant to powdery mildew (Erysiphe graminis D.C f. sp. se-calis marchal)]. Hod. Rośl. Aklim. 39(6), 68–80.
  84. Santos E., Benito C., Silva-Navas J., Gallego F.J., Figueiras A.M., Pinto-Carnide O., Matos M., 2018. Characterization, genetic diversity, phylogenetic relationships, and expression of the aluminum tolerance MATE1 gene in Secale species. Biol. Plant. 62(1), 109–120, https://doi.org/10.1007/s10535-017-0749-0.
  85. Scholz M., Ruge-Wehling B., Habekuss A., Schrader O., Pendinen G., Fischer K., Wehling P., 2009. Ryd4Hb: a novel resistance gene introgressed from Hordeum bulbosum into barley and conferring complete and dominant resistance to the barley yellow dwarf virus. Theor. Appl. Genet. 119, 837–849, https://doi.org/10.1007/s00122-009-1093-3.
  86. Semenov M. A., Stratonivitch P., Alghabari F., Gooding M.J., 2014. Adapting wheat in Europe for climate change. Journal of cereal science 59, 245–256 https://doi.org/10.1016/ j.jsc.2014.01.006.
  87. Sencer H.A., Hawkes J.G., 2008. On the origin of cultivated rye. Biol. J. Linn. Soc. 13(4), 299–313, https://doi.org/10.1111/j.1095-8312.1980.tb00089.x.
  88. Singh R., 1977. Cross compatibility meiotic pairing and fertility in 5 Secale species and their interspecific hybrids cereale. Res. Comminic 5, 67–75.
  89. Singh R.P., Huerta-Espino J., Sharma R., Joshi A.K., Trethowan R., 2007. High yielding spring bread wheat germplasm for global irrigated and rainfed production systems. Euphytica 157, 351–363, https://doi.org/10.1007/s10681-006-9346-6.
  90. Smith C.M., Belay T., Stauffer C., Stary P., Kubeckova I., Starkey S., 2004. Identification of russian wheat aphid (Homoptera: Aphididae) populations virulent to the Dn4 resistance gene. J. Econ. Entomol. 97(3), 1112–1117.
  91. Strzembicka A., Gruszecka D., Grądzielewska A., 2007. Odporność mieszańców pszenżyta z kozieńcami i pszenperzem na rdzę brunatną i żółtą oraz mączniaka prawdziwego [Resistance of triticale hybrids with phasmatops and wheatgrass to brown and yellow rust as well as powdery mildew]. Zesz. Probl. Post. Nauk Rol. 517, 711–719.
  92. Tadesse W., Schmolke M., Mohler V., Wenzel G., Hsam S.L.K., Zeller F.J., 2007. Molecular mapping of resistance genes to tan spot (Pyrenophora tritici-repentis race 1) in synthetic wheat lines. Theor. Appl. Genet. 114, 855–862, https://doi.org/10.1007/s00122-006-0484-y.
  93. Tanksley S.D., McCouch S.R., 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063–1066.
  94. Terasawa Y., Rahman S.M., Takata K., Ikeda T.M., 2012. Distribution of Hordoindoline in the genus Hordeum. Theor. Appl. Genet. 124(1), 143–151, https://doi.org/10.1007/s00122-011-1693-6.
  95. Tratwal A., Jakubowska M., 2004. Ocena przydatności systemów wspomagania decyzji o ochronie pszenicy ozimej przed mączniakiem prawdziwym na terenie Wielkopolski [The assessment of the usefulness of decision support systems for winter wheat protection against powdery mildew in Wielkopolska]. Post. Ochr. Rośl. 44, 1169–1172.
  96. Villa T.C.C., Maxted N., Scholten M., Ford-Lloyd B., 2005. Defining and identifying crop land-races. Plant Genet. Resour-C 3(3), 373–384, https://doi.org/10.1079/PGR200591.
  97. von Bothmer R., Sato K., Komatsuda T., Yasuda S., Fischbeck G., 2003. The domestication of cultivated barley. In: von Bothmer R., van Hintum T., Knuüpffer H., Sato K. (ed.) Diversity in barley (Hordeum vulgare). Elsevier Science B.V., Amsterdam, 9–27.
  98. Walther U., Rapke H., Proeseler G., Szigat G., 2000. Hordeum bulbosum – a new source of disease resistance-transfer of disease resistance to leaf rust and mosaic viruses from H. bulbosum into winter barley. Plant Breed. 199, 215–218.
  99. Warburton M.L., Rauf S., Marek L., Hussain M., Ogunola O., Sanchez Gonzalez J.J., 2017. The use of crop wild relatives in maize and sunflower breeding. Crop Sci. 57, 1–14, https://doi.org/10.2135/cropsci2016.10.0855.
  100. Yahiaoui N., Kaur N., Keller B., 2009. Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat. Plant J. 57, 846–856, https://doi.org/10.1111/j.1365-313X.2008.03731.x.
  101. Yang Z., Li G.R., Jia J.Q., Zeng X., Lei M.P., Zeng Z.X., Zhang T., Ren Z.L., 2009. Molecular cytogenetic characterization of wheat– Secale africanum amphiploids and derived introgression lines with stripe rust resistance. Euphytica 167(2), 197–202, https://doi.org/10.1007/ s12041-011-0081-y.
  102. Yildirim A., Jones S.S., Murray T.D., Line R.F., 2000. Evaluation of Dasypyrum villosum popula-tions for resistance to cereal eyespot and stripe rust pathogens. Plant Dis. 84(1), 40–44, https://doi.org /10.1094/PDIS.2000.84.1.40.
  103. Yousuf N., Dar S.A., Lone A.A., Ahanger M.A., Dar Z.A., Bhat M.A., Shikari A., Sofi P. A., Bhat Z.A., Gulzar S., 2018. Field screening of maize (Zea mays L.) landraces for resistance against turcicum leaf blight (TLB) under temperate conditions. Int. J. Chem. Stud. 6(1), 333–337.
  104. Yun S.J., Gyenis L., Bossolini E., Hayes P.M., Matus I., Smith K.P., Steffenson B.J., Tuberosa R., Muehlbauer G.J., 2006. Validation of quantitative trait loci for multiple disease resistance in barley using advanced backcross lines developed with a wild barley. Crop Sci. 46, 1179–1186, https://doi.org/10.2135/cropsci2005.08-0293.

Downloads

Download data is not yet available.