Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 78 Nr 1 (2023)

Artykuły

Wpływ systemów uprawy na zmiany ilościowe dominujących gatunków chwastów

DOI: https://doi.org/10.24326/as.2023.5025
Przesłane: 21 grudnia 2022
Opublikowane: 09-06-2023

Abstrakt

A field experiment was established to evaluate quantitative changes in weed species prevailing in a crop rotation and a 30-year cereal monoculture. The subject of the study included cropping systems: a) crop rotation, and b) cereal monoculture. First (1989–1992) and second (1993–1996) rotation focused on weed infestation of winter triticale in crop rotation and monoculture; third (1997–2000) and fourth (2001–2004) focused on weed infestation of winter wheat; fifth (2005–2008), sixth (2009–2012), seventh (2013–2015) and eighth (2016–2018) focused on weed infestation of spring wheat. The prevailing weed species included: Apera spica-venti, Avena fatua, Galium aparine, Fallopia convolvulus, Stellaria media, Viola arvensis, Anthemis arvensis, Veronica persica, Consolida regalis, and Papaver rhoeas. Among these, A. spica-venti predominated in the winter cereals whereas A. fatua in the spring ones. Numbers of A. spica-venti and A. fatua plants were several times higher in the monoculture than in the crop rotation. The substitution of winter cereals with spring ones in cultivation decreased A. spica-venti population in the spring cereals, but increased the population of A. fatua, particularly in the monoculture.

Bibliografia

  1. Bohren C., Mermillod G., Delabays N., 2006. Erstmals resistenz gegen sulfonylharnstoffe in der Schweiz bestätigt [First case of resistance to sulfonylurea herbicides reported in Swit-zerland: a biotype of loose silky-bent (Apera spica-venti (L.) P.B.]. Agrarforschung 13, 120–125.
  2. Boyette C.D., Hoagland R.E., Weaver M.A., 2008. Interaction of a bioherbicide and glyphosate for controlling hemp sesbania in glyphosate-resistant soybean. Weed Biol. Manag. 8(1), 18–24. http://dx.doi.org/10.1111/j.1445-6664.2007.00269.x DOI: https://doi.org/10.1111/j.1445-6664.2007.00269.x
  3. Chauhan B.S., Singh R.G., Mahajan G., 2012. Ecology and management of weeds under conservation agriculture: A review. Crop Prot. 38, 57–65. http://dx.doi.org/10.1016/j.cropro.2012.03.010 DOI: https://doi.org/10.1016/j.cropro.2012.03.010
  4. Clarke J., Moss S., Orson J., 2000. The future for grass weed management in the UK. Pestic. Outlook 11(2), 59–63. https://dx.doi.org/10.1039/b006322n DOI: https://doi.org/10.1039/b006322n
  5. Collavo A., Sattin M., 2014. First glyphosate-resistant Lolium spp. biotypes found in a Europe-an annual arable cropping system also affected by ACCase and ALS resistance. Weed Res. 54(4), 325–334. https://doi.org/10.1111/wre.12082 DOI: https://doi.org/10.1111/wre.12082
  6. Demjanová E., Macák M., Ĉaloviü I., Majerník F., Týr S., Smatana J., 2009. Effects of tillage systems and crop rotation on weed density, weed species composition and weed biomass in maize. Agron. Res. 7(2), 785–792.
  7. Eslami S., 2014. Weed management in conservation agricultural systems. In: B. Chauhan, G. Mahajan (eds). Recent Advances in Weed Management. Springer. New York, NY, 87–124. https://doi.org/10.1007/978-1-4939-1019-9_5 DOI: https://doi.org/10.1007/978-1-4939-1019-9_5
  8. Farooq O., Mubeen K., Ali H.H., Ahmad S., 2019. Non-chemical weed management for field crops. In: M. Hasanuzzaman (ed.). Agronomic Crops. Springer, Singapore, 317–348. http://dx.doi.org/10.1007/978-981-32-9783-8_16 DOI: https://doi.org/10.1007/978-981-32-9783-8_16
  9. Hald A.B., 1999. The impact of changing the season in which cereals are sown on the diversity of the weed flora in rotational fields in Denmark. J. Appl. Ecol. 36(1), 24–32. http://dx.doi.org/10.1046/j.1365-2664.1999.00364.x DOI: https://doi.org/10.1046/j.1365-2664.1999.00364.x
  10. Hayden Z.D., Brainard D.C., Henshaw B., Ngouajio M., 2012. Winter annual weed suppres-sion in rye–vetch cover crop mixtures. Weed Technol. 26(4), 818–825. http://dx.doi.org/10.1614/WT-D-12-00084.1 DOI: https://doi.org/10.1614/WT-D-12-00084.1
  11. Heap I.M., 1997. The occurrence of herbicide-resistant weeds worldwide. Pestic. Sci. 51(3), 235–243. http://dx.doi.org/10.1002/(SICI)1096-9063(199711)51:3%3C235::AID-PS649%3E3.0.CO;2-N DOI: https://doi.org/10.1002/(SICI)1096-9063(199711)51:3<235::AID-PS649>3.0.CO;2-N
  12. Heap I., 2014. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 7(9), 1306–1315. http://dx.doi.org/10.1002/ps.3696 DOI: https://doi.org/10.1002/ps.3696
  13. IUSS Working Group WRB 2015. World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports 106. FAO, Rome.
  14. Koning L.A., de Mol F., Gerowitt B., 2019. Effects of management by glyphosate or tillage on the weed vegetation in a field experiment. Soil Till. Res. 186, 79–86. http://dx.doi.org/10.1016/j.still.2018.10.012 DOI: https://doi.org/10.1016/j.still.2018.10.012
  15. Liebman M., Dyck E.A., 1993. Crop rotation and intercropping strategies for weed manage-ment. Ecol. Appl. 3(1), 92–122. http://dx.doi.org/10.2307/1941795 DOI: https://doi.org/10.2307/1941795
  16. Martín C.S., Long D.S., Gourlie J.A., Barroso J., 2019. Spring crops in three year rotations reduce weed pressure in winter wheat. Field Crops Res. 233, 12–20. http://dx.doi.org/10.1016/j.fcr.2018.12.017 DOI: https://doi.org/10.1016/j.fcr.2018.12.017
  17. Meier U. (ed.), 2001. Growth stages of mono-and dicotyledonous plants, 2nd. ed. Federal Biological Research Centre for Agriculture and Forestry. https://www.politicheagricole.it/
  18. flex/AppData/WebLive/Agrometeo/MIEPFY800/BBCHengl2001.pdf [date of access: 4.02.2023].
  19. Melander B., Holst N., Jensen P.K., Hansen E.M., Olesen J.E., 2008. Apera spica-venti popula-tion dynamics and impact on crop yield as affected by tillage, crop rotation, location and herbicide programmes. Weed Res. 48(1), 48–57. http://dx.doi.org/10.1111/j.1365-3180.2008.00597.x DOI: https://doi.org/10.1111/j.1365-3180.2008.00597.x
  20. Moss S.R., Storkey J., Cussans J.W., Perryman S.A.M, Hewitt M.V., 2004. The Broadbalk long-term experiment at Rothamsted: what has it told us about weeds? Weed Sci. 52(5), 864–873. http://dx.doi.org/10.1614/WS-04-012R1 DOI: https://doi.org/10.1614/WS-04-012R1
  21. Northam F.E., Callihan R.H., 1992. The windgrasses (Apera Adans., Poaceae) in North Ameri-ca. Weed Technol. 6(2), 445–450. https://doi.org/10.1017/S0890037X0003503X DOI: https://doi.org/10.1017/S0890037X0003503X
  22. Owen M.D.K., Zelaya I.A., 2005. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61(3), 301–311. http://dx.doi.org/10.1002/ps.1015 DOI: https://doi.org/10.1002/ps.1015
  23. Pallutt B., 1999. Einfluss von Fruchtfolge, Bodenbearbeitung und Herbizidanwendung auf Populationsdynamik und Konkurrenz von Unkräutern in Wintergetreide [Influence of crop rotation, tillage and herbicide use on population dynamics and competition of weeds in winter cereals]. Gesunde Pflanz. 51, 109–120.
  24. Perez A., Alister C., Kogan M., 2004. Absorption, translocation and allocation of glyphosate in resistant and susceptible Chilean biotypes of Lolium multiflorum. Weed Biol. Manag. 4(1), 56–58. http://dx.doi.org/10.1111/j.1445-6664.2003.00117.x DOI: https://doi.org/10.1111/j.1445-6664.2003.00117.x
  25. Poggio S.L., 2005. Structure of weed communities occurring in monoculture and intercrop-ping of field pea and barley. Agric. Ecosyst. Environ. 109(1–2), 48–58. http://dx.doi.org/10.1016/j.agee.2005.02.019 DOI: https://doi.org/10.1016/j.agee.2005.02.019
  26. Van Gessel M.J., 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49(6), 703–705. http://dx.doi.org/10.1614/0043-1745(2001)049[0703:RPRHFD]2.0.CO;2 DOI: https://doi.org/10.1614/0043-1745(2001)049[0703:RPRHFD]2.0.CO;2
  27. Wallgren B., Avholm K., 1978. Dormancy and germination of Apera spica-venti L. an-dAlopecurus myosuroides Huds Seeds. Swed. J. Agric. Res. 8(1), 11–15.
  28. Woźniak A., Soroka M., 2015. Structure of weed communities occurring in crop rotation and monoculture of cereals. Int. J. Plant Prod. 9(3), 487–506.
  29. Woźniak A., Soroka M., 2018. Effect of crop rotation and tillage system on the yield and weed infestation of spring wheat and on soil properties. Appl. Ecol. Environ. Res. 16(3), 3087–3096. http://dx.doi.org/10.15666/aeer/1603_30873096 DOI: https://doi.org/10.15666/aeer/1603_30873096
  30. Woźniak A., 2018. Effect of tillage system on the structure of weed infestation of winter wheat. Span. J. Agric. Res. 16(4), e1009. http://dx.doi.org/10.5424/sjar/2018164-12531 DOI: https://doi.org/10.5424/sjar/2018164-12531
  31. Woźniak A., Rachoń L., 2019. Effect of tillage systems on pea crop infestation with weeds. Arch. Agron. Soil Sci. 65(7), 877–885. http://dx.doi.org/10.1080/03650340.2018.1533956 DOI: https://doi.org/10.1080/03650340.2018.1533956
  32. Young B.G., 2006. Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol. 20(2), 301–307. http://dx.doi.org/10.1614/WT-04-189.1 DOI: https://doi.org/10.1614/WT-04-189.1

Downloads

Download data is not yet available.

Inne teksty tego samego autora

1 2 > >> 

Podobne artykuły

<< < 11 12 13 14 15 16 17 18 19 20 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.