Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 77 Nr 3 (2022)

Artykuły

Wpływ nawozów fosforowych powstałych na bazie osadów ściekowych na plonowanie, skład chemiczny roślin i gleby

DOI: https://doi.org/10.24326/as.2022.3.1
Przesłane: 11 maja 2022
Opublikowane: 28-10-2022

Abstrakt

Fosfor jest niezbędnym, ale i ograniczonym w występowaniu pierwiastkiem o dużym znaczeniu dla wszystkich żywych organizmów, w tym także dla roślin. Światowe złoża fosforytów wykorzystywanych do produkcji nawozów fosforowych ulegają szybkiemu wyczerpaniu, stąd pierwiastek ten został umieszczony na tzw. liście surowców krytycznych. Rolnictwo i ogrodnictwo w dużym stopniu uzależnione jest od wykorzystania nawozów fosforowych w celu utrzymania produkcji żywności oraz pasz o wysokiej jakości. Przewiduje się, że zapotrzebowanie na fosfor jako nawóz wzrośnie wraz ze wzrostem liczby ludności na świecie z obecnych 7,2 mld do 9,6 mld w 2050 r. Stąd należy poszukiwać alternatywnych jego źródeł. Potencjalnym źródłem fosforu są różnego rodzaju odpady m.in. osady ściekowe czy popioły powstające w wyniku ich spalania. Bezpośrednie
wykorzystanie osadów ściekowych w rolnictwie oraz ich składowanie jest obecnie zastępowane przez termiczną utylizację czy odzysk składników pokarmowych. Dzięki wykorzystaniu gospodarki o charakterze cyrkularnym, osady ściekowe jako potencjalnie niebezpieczne odpady, jednocześnie zasobne w fosfor, zostają przekształcone w gotowy produkt i wracają ponownie do środowiska w postaci nawozów. Produktem odzysku fosforu z osadów ściekowych jest m.in. struwit, który może być z powodzeniem wykorzystany w rolnictwie. Priorytetem polityki gospodarczej UE jest produkcja nawozów w sposób zrównoważony, który zostanie spełniony np. poprzez produkcję struwitu. Struwit w swoim składzie zawiera nie tylko fosfor, ale także azot i magnez. Ilość fosforu i magnezu, jaka może zostać wprowadzona wraz ze struwitem do gleby, jest większa niż w przypadku typowych nawozów mineralnych. Zawartość azotu i potasu w nawozach struwitowych jest
niższa w porównaniu z tradycyjnymi nawozami. Dlatego zaleca się stosowanie struwitu w połączeniu z nawozami konwencjonalnymi, dla optymalnego zbilansowania poszczególnych makroskładników. Struwit uważany jest za skuteczny nawóz wolno uwalniający składniki pokarmowe, który z powodzeniem może być aplikowany w uprawie roślin rolniczych, warzywniczych czy ozdobnych.

Niski indeks zasolenia, ograniczone wymywanie składników odżywczych i wysoka jakość nawozu wynikająca z niskiej zawartości metali ciężkich czynią struwit nawozem przyjaznym dla środowiska. Struwit jako nawóz doglebowy nie powoduje zwiększenia zawartości metali ciężkich w roślinach oraz podłożu. Aplikacja struwitu pozytywnie wpływa na plony wielu gatunków roślin uprawnych. Wstępne badania nad jego wykorzystaniem w produkcji roślinnej wskazują nawet na wyższą skuteczność w porównaniu z typowymi nawozami fosforowymi rozpuszczalnymi w wodzie. W związku z tym przyszłe badania nad struwitem powinny koncentrować się m.in. na optymalizacji produkcji i wykorzystania nawozów powstałych na bazie osadów ściekowych w nawożeniu różnych gatunków upraw rolniczych, ogrodniczych czy sadowniczych.

Bibliografia

  1. Amann A., Zoboli O., Krampe J., Rechberger H., Zessner M., Egle L., 2018. Environmental impacts of phosphorus recovery from municipal wastewater. Resour Conserv Recycl. 130, 127–139. https://doi.org/10.1016/j.resconrec.2017.11.002 DOI: https://doi.org/10.1016/j.resconrec.2017.11.002
  2. Bezak-Mazur E., Stoińska R., 2013. Znaczenie fosforu w środowisku – artykuł przeglądowy. Arch. Waste Manag. Environ. Prot. 15(3), 33–42 [in Polish].
  3. Bezak-Mazur E., Mazur A., 2011. Specjacja fosforu w osadach ściekowych powstających w technologii EvU-PERL. Ochr. Śr. Zasobów Nat. 49, 382–388.
  4. Bień J., Neczaj E., Worwąg M., Grosser A., Nowak D., Milczarek M., Janik M., 2013. Kierunki zagospodarowania osadów w Polsce po roku 2013. Inż. Ochr. Śr. 14(4), 375–384.
  5. Bonvin C., Etter B., Udert K.M., Frossard E., Nanzer S., Tamburini F., Oberson A., 2015. Plant uptake of phosphorus and nitrogen recycled from synthetic source-separated urine. Ambio. 44(2), 17–27. https://doi.org/10.1007/s13280-014-0616-6 DOI: https://doi.org/10.1007/s13280-014-0616-6
  6. Buckwell A., Nadeu E. 2016. Nutrient recovery and reuse (NRR) in European agriculture. A review of the issues, opportunities, and actions, https://www.organicseurope.bio/content/uploads/2020/06/2016_RISE_NRR_Full_EN_compressed.pdf?dd
  7. Bunce J.T., Ndam E, Ofiteru I.D., Moore A., Graham D.W., 2018. A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Front. Environ. Sci. 6(8). https://doi.org/10.3389/fenvs.2018.00008 DOI: https://doi.org/10.3389/fenvs.2018.00008
  8. Cabeza R., Steingrobe B., Römer W., Claassen N., 2011. Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments. Nutr. Cycl. Agroecosystems 91(2). https://doi.org/10.1007/s10705-011-9454-0 DOI: https://doi.org/10.1007/s10705-011-9454-0
  9. Childers D.L., Corman J., Edwards M., Elser J.J., 2011. Sustainability challenges of phosphorus and food: Solutions from closing the human phosphorus cycle. Bioscience 61(2), 117–124. https://doi.org/10.1525/bio.2011.61.2.6 DOI: https://doi.org/10.1525/bio.2011.61.2.6
  10. Cieślik B., Konieczka P., 2017. A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J. Clean. Prod. 142(4), 1728–1740. https://doi.org/10.1016/j.jclepro.2016.11.116 DOI: https://doi.org/10.1016/j.jclepro.2016.11.116
  11. Cieślik B.M., Namieśnik J., Konieczka P., 2015. Review of sewage sludge management: Standards, regulations and analytical methods. J. Clean. Prod. 90, 1–15. https://doi.org/10.1016/j.jclepro.2014.11.031 DOI: https://doi.org/10.1016/j.jclepro.2014.11.031
  12. Cornel P., Schaum C., 2009. Phosphorus recovery from wastewater: Needs, technologies and costs. Water Sci Technol. 59(6), 1069–1076. https://doi.org/10.2166/wst.2009.045 DOI: https://doi.org/10.2166/wst.2009.045
  13. Dai J.Y., Chen L., Zhao J.F., Ma N., 2006. Characteristics of sewage sludge and distribution of heavy metal in plants with amendment of sewage sludge. J. Environ. Sci. (China) 18(6), 1094–1100. https://doi.org/10.1016/s1001-0742(06)60045-4 DOI: https://doi.org/10.1016/S1001-0742(06)60045-4
  14. Degryse F., Baird R., da Silva R.C., McLaughlin M.J., 2017. Dissolution rate and agronomic effectiveness of struvite fertilizers – effect of soil pH, granulation and base excess. Plant Soil. 410, 139–152. https://doi.org/10.1007/s11104-016-2990-2 DOI: https://doi.org/10.1007/s11104-016-2990-2
  15. Dissanayake C.B., Chandrajith R., 2009. Phosphate Mineral Fertilizers, trace metals and human health. J. Natl Sci Found Sri Lanka. 37 (3), 153-165. https://doi.org/10.4038/jnsfsr.v37i3.1219 DOI: https://doi.org/10.4038/jnsfsr.v37i3.1219
  16. EC, 2020. Critical raw materials, https://ec.europa.eu/growth/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en [dostęp: 11.07.2022].
  17. Egle L., Rechberger H., Krampe J., Zessner M., 2016. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci Total Environ. 571, 522–542. https://doi.org/10.1016/j.scitotenv.2016.07.019 DOI: https://doi.org/10.1016/j.scitotenv.2016.07.019
  18. Egle L., Rechberger H., Zessner M., 2015. Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour. Conserv. Recycl. 105(B), 325–346. https://doi.org/10.1016/j.resconrec.2015.09.016 DOI: https://doi.org/10.1016/j.resconrec.2015.09.016
  19. Eurostat, 2017. Waste Statistics/es. Statistics Explained. Com Eur. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics [dostęp: 11.07.2022].
  20. Gawdzik J., Długosz J., Urbaniak M., 2015. General characteristics of the quantity and quality of sewage sludge from selected wastewater treatment plants in Świętokrzyskie province. Environ. Prot Eng. 41, 107–117. DOI: https://doi.org/10.37190/epe150209
  21. Geissler B., Hermann L., Mew M.C., Steiner G., 2018. Striving toward a circular economy for phosphorus: The role of phosphate rock mining. Minerals 8(9), 395. https://doi.org/10.3390/min809039 DOI: https://doi.org/10.3390/min8090395
  22. Ghosh G.K., Mohan K.S., Sarkar A.K., 1996. Characterization of soil-fertilizer P reaction products and their evaluation as sources of P for gram (Cicer arietinum L.). Nutr. Cycl. Agroecosyst. 46(1), 71–79. DOI: https://doi.org/10.1007/BF00210225
  23. González-Ponce R., García-López-de-Sá M.E., 2007. Evaluation of struvite as a fertilizer: A comparison with traditional P sources. Agrochimica 51(6), 301 308.
  24. Guidi Nissim W., Cincinelli A., Martellini T., Alvisi L., Palm E., Mancuso S., Azzarello E., 2018. Phytoremediation of sewage sludge contaminated by trace elements and organic compounds. Environ Res. 356–366. https://doi/org/10.1016/j.envres.2018.03.009 DOI: https://doi.org/10.1016/j.envres.2018.03.009
  25. Hermann L., Kraus F, Hermann R., 2018. Phosphorus processing-potentials for higher efficiency. Sustainability 10(5), 1482. https://doi.org/10.3390/su10051482 DOI: https://doi.org/10.3390/su10051482
  26. Herzel H., Krüger O., Hermann L., Adam C., 2016. Sewage sludge ash – A promising secondary phosphorus source for fertilizer production. Sci. Total Environ. 542, 1136–1143. https://doi.org/10.1016/j.scitotenv.2015.08.059 DOI: https://doi.org/10.1016/j.scitotenv.2015.08.059
  27. Hoornweg D., Bhada-Tata P., Kennedy C., 2013. Environment: waste production must peak this century Nature, 502, 615–617. https://doi.org/10.1038/502615a DOI: https://doi.org/10.1038/502615a
  28. Jama-Rodzeńska, A., Sowiński J., Koziel J.B.A., 2021. Phosphorus recovery from sewage sludge ash based on cradle-to-cradle approach – mini-review. Minerals 11(985). https://doi.org/10.3390/min11090985 DOI: https://doi.org/10.3390/min11090985
  29. Johnston A.E., Richards I.R., 2003. Effectiveness of different precipitated phosphates as phosphorus sources for plants. Soil Use Manag. 19(1), 45–49. https://doi.org/10.1079/SUM2002162 DOI: https://doi.org/10.1111/j.1475-2743.2003.tb00278.x
  30. Kacprzak M., Neczaj E., Fijałkowski K., Grobelak A., Grosser A., Worwag M., Rorat A., Brattebo H., Almås Å., Singh B.R., 2017. Sewage sludge disposal strategies for sustainable development. Environ. Res. 156, 39–46. https://doi/org/10.1016/j.envres.2017.03.010 DOI: https://doi.org/10.1016/j.envres.2017.03.010
  31. Krüger O, Adam C., 2014. Recovery potential of German sewage sludge ash. Waste Manag. 45, 400–406. https://doi.org/10.1016/j.wasman.2015.01.025 DOI: https://doi.org/10.1016/j.wasman.2015.01.025
  32. Latifian M., Liu J., Mattiassona B., 2012. Struvite-based fertilizer and its physical and chemical properties. Environ. Technol. (United Kingdom) 33(22–24), 2691–2697. https://doi.org/10.1080/09593330.2012.676073 DOI: https://doi.org/10.1080/09593330.2012.676073
  33. Li B., Boiarkina I., Yu W., Huang H.M., Munir T., Wang G.Q., Young B.R., 2019. Phosphorous recovery through struvite crystallization: Challenges for future design. Sci. Total Environ. 648, 1244–1256. https://doi.org/10.1016/j.scitotenv.2018.07.166 DOI: https://doi.org/10.1016/j.scitotenv.2018.07.166
  34. MacDonald G.K., Bennett E.M., Potter P.A., Ramankutty N., 2011. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl. Acad. Sci. USA 108(7), 3086–3091. https://doi.org/10.1073/pnas.1010808108 DOI: https://doi.org/10.1073/pnas.1010808108
  35. Massey M.S., Davis J.G., Ippolito J.A., Sheffield R.E., 2009. Effectiveness of recovered phosphate as fertilizers in neutral and slightly alkaline soils. Agron. 101, 323–329. DOI: https://doi.org/10.2134/agronj2008.0144
  36. Morse G.K., Brett S.W., Guy J.A., Lester J.N., 1998. Review: Phosphorus removal and recovery technologies. Sci Total Environ. 212, 69–89. DOI: https://doi.org/10.1016/S0048-9697(97)00332-X
  37. Nguyen N.K., Chaudhary D.K., Dahal R.H., Trinh N.H., Kim J., Chang S.W., Hong Y., La D.D., Nguyen X.C., Ngo H.H., Chung W.J., Nguyen D.D., 2021. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge, Fuel 285(1). DOI: https://doi.org/10.1016/j.fuel.2020.119105
  38. Peng L., Dai H., Wu Y., Peng Y., Lu X., 2018. A comprehensive review of phosphorus recovery from
  39. wastewater by crystallization processes. Chemosphere 197, 768-781. https://doi/org/10.1016/j.chemosphere.2018.01.098.
  40. Plaza C., Sanz R., Clemente C., Fernández J.M., González R., Polo A., Colmenarejo M.F., 2007. Greenhouse evaluation of struvite and sludges from municipal wastewater treatment works as phosphorus sources for plants. J. Agric. Food Chem. 55(20), 8206–8212. https://doi.org/10.1021/jf071563y DOI: https://doi.org/10.1021/jf071563y
  41. Rahman M.M., Salleh M.A.M., Rashid U., Ahsan A., Hossain M.M., Ra C.S., 2014. Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review. Arab. J. Chem. 7, 139–155. DOI: https://doi.org/10.1016/j.arabjc.2013.10.007
  42. Reza A., Shim S., Kim S., Ahmed N., Won S., Ra C., 2019. Nutrient leaching loss of pre-treated struvite and its application in Sudan grass cultivation as an eco-friendly and sustainable fertilizer source. Sustainability 11(15), 4204. https://doi.org/10.3390/su11154204 DOI: https://doi.org/10.3390/su11154204
  43. Rhyner C.R., Schwartz L.J., Wenger R.B., Kohrell M.G.,1995. Waste generation. W: C.R. Rhyner, L.J. Schwartz, R.B.Wenger, M.G. Kohrell, Waste management and resource recovery. Boca Raton. https://doi.org/10.1201/9780203734278 DOI: https://doi.org/10.1201/9780203734278
  44. Ricardo G.P., López-de-Sá E.G., Plaza C., 2009. Lettuce response to phosphorus fertilization with struvite recovered from municipal wastewater. HortScience 44, 2. https://doi.org/10.21273/HORTSCI.44.2.426 DOI: https://doi.org/10.21273/HORTSCI.44.2.426
  45. Rittl T., Krogstad T., Eikås S., Saltnes T., Sørensen G., Glestad H.E., Løes A., 2019. Effects of struvite application on soil and plants: a short‐term field study. Norsøk Rep. 4(10), https://orgprints.org/id/eprint/36472/1/NORS%C3%98K%20RAPPORT%2010%20struvitt%20FINAL%20Sept%205%202019%20trykk.pdf
  46. Ronteltap M., Maurer M., Gujer W., 2007. Struvite precipitation thermodynamics in source-separated urine. Water Res. 41(5), 977–984. https://doi.org/10.1016/j.watres.2006.11.046 DOI: https://doi.org/10.1016/j.watres.2006.11.046
  47. Roy E.D., 2017. Phosphorus recovery and recycling with ecological engineering: A review. Ecol. Eng. 98, 213–227. https://doi.org/10.1016/j.ecoleng.2016.10.076 DOI: https://doi.org/10.1016/j.ecoleng.2016.10.076
  48. Scholz R.W., Ulrich A.E., Eilittä M., Roy A., 2013. Sustainable use of phosphorus: A finite resource. Sci. Total Environ. 461–462, 799–803. https://doi.org/10.1016/j.scitotenv.2013.05.043 DOI: https://doi.org/10.1016/j.scitotenv.2013.05.043
  49. Sengupta S., Nawaz T., Beaudry J., 2015. Nitrogen and phosphorus recovery from wastewater. Curr. Pollut. Reports 1(3), 155–166. DOI: https://doi.org/10.1007/s40726-015-0013-1
  50. Shu L., Schneider P., Jegatheesan V., Johnson J., 2006. An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresour. Technol. 97(17), 2211–2216. https://doi.org/10.1016/j.biortech.2005.11.005 DOI: https://doi.org/10.1016/j.biortech.2005.11.005
  51. Siciliano A., 2016. Assessment of fertilizer potential of the struvite produced from the treatment of methanogenic landfill leachate using low-cost reagents. Environ Sci Pollut Res. 23(6), 5949–5959. https://doi.org/10.1007/s11356-015-5846-z DOI: https://doi.org/10.1007/s11356-015-5846-z
  52. Smol M., Kulczycka J., Kowalski Z., 2016. Sewage sludge ash (SSA) from large and small incineration plants as a potential source of phosphorus – Polish case study. J. Environ. Manag. 184(Pt 3), 617–628. https://doi.org/10.1016/j.jenvman.2016.10.035 DOI: https://doi.org/10.1016/j.jenvman.2016.10.035
  53. Spanoghe J., Grunert O., Wambacq E., Sakarika M., Papini G., Alloul A., Spiller M., Derycke V., Stragier L., Verstraete H., Fauconnier K., Verstraete W., Haesaert G., Vlaeminck S.E., 2020.
  54. Storage, fertilization and cost properties highlight the potential of dried microbial biomass as organic fertilizer. Microb Biotechnol. 13(5), 1377–1389. https://doi.org/10.1111/1751-7915.13554 DOI: https://doi.org/10.1111/1751-7915.13554
  55. Szymańska M., Sosulski T., Bożętka A., Dawidowicz U., Wąs A., Szara E., Malak-Rawlikowska A., Sulewski P., van Pruissen G.W.P., Cornelissen R.L., 2020. Evaluating the struvite recovered from anaerobic digestate in a farm bio-refinery as a slow-release fertiliser. Energies 13(20), 5342. https://doi.org/10.3390/en13205342 DOI: https://doi.org/10.3390/en13205342
  56. Szymańska M., Szara E., Wąs A., Sosulski T., van Pruissen G.W.P., Cornelissen R.L., 2019. Struvite – an innovative fertilizer from anaerobic digestate produced in a bio-refinery. Energies 12(2), 296. https://doi.org/10.3390/en12020296 DOI: https://doi.org/10.3390/en12020296
  57. Talboys P.J, Heppell J., Roose T., Healey J.R., Jones D.L., Withers P.J.A., 2016. Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant Soil. 401, 109–123. https://doi.org/10.1007/s11104-015-2747-3. DOI: https://doi.org/10.1007/s11104-015-2747-3
  58. Teah H.Y., Onuki M., 2017. Support phosphorus recycling policy with social life cycle assessment: A case of Japan. Sustainability 9, 1223. https://doi.org/10.3390/su9071223 DOI: https://doi.org/10.3390/su9071223
  59. Tytła M., 2019. Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in Poland – case study. Int. J. Environ. Res. Public Health 16(13), 2430. https://doi.org/10.3390/ijerph16132430 DOI: https://doi.org/10.3390/ijerph16132430
  60. UND – United Nations Department of Economic and Social Affairs Population Division, 2017. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables, ESA/P/WP/248.
  61. Uysal A., Yilmazel Y.D., Demirer G.N., 2010. The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J. Hazard Mater. 181(1–3), 248–254. https://doi.org/10.1016/j.jhazmat.2010.05.004 DOI: https://doi.org/10.1016/j.jhazmat.2010.05.004
  62. Wen G., Huang L., Zhang X., Hu Z., 2019. Uptake of nutrients and heavy metals in struvite recovered from a mixed wastewater of human urine and municipal sewage by two vegetables in calcareous soil. Environ. Technol. Innov. 15(2). DOI: https://doi.org/10.1016/j.eti.2019.100384
  63. Withers P.J.A., Forber K.G., Lyon C., Rothwell S., Doody D.G., Jarvie H.P., Martin-Ortega J., Jacobs B., Cordell D., Patton M., Camargo-Valero M.A., Cassidy R., 2020. Towards resolving the phosphorus chaos created by food systems. Ambio 49, 1076–1089. https://doi.org/10.1007/s13280-019-01255-1 DOI: https://doi.org/10.1007/s13280-019-01255-1
  64. Zeng C., Zhang C., Zeng J., Luo H., Tian D., Zhang H., Long F., Xu Y., 2015. Noises-induced regime shifts and -enhanced stability under a model of lake approaching eutrophication. Ecol. Complex. DOI: https://doi.org/10.1016/j.ecocom.2015.02.005

Downloads

Download data is not yet available.

Podobne artykuły

1 2 3 4 5 6 7 8 9 10 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.